Сделать домашней страницей | Добавить в избранное
База RFC-документов

Полезное


Статьи

 

Request for Comments number 2002

Главная / RFC2002


Поиск RFC:

RFC2002 IP Mobility Support


RFC2002   IP Mobility Support    C. Perkins, Ed. [ October 1996 ] ( TXT = 193103 bytes)(Obsoleted by RFC3220)(Updated by RFC2290)

Скачать PDF версию >>>









Network Working Group                                 C. Perkins, Editor
Request for Comments: 2002                                           IBM
Category: Standards Track                                   October 1996

                          IP Mobility Support

Status of this Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Abstract

   This document specifies protocol enhancements that allow transparent
   routing of IP datagrams to mobile nodes in the Internet.  Each mobile
   node is always identified by its home address, regardless of its
   current point of attachment to the Internet.  While situated away
   from its home, a mobile node is also associated with a care-of
   address, which provides information about its current point of
   attachment to the Internet.  The protocol provides for registering
   the care-of address with a home agent.  The home agent sends
   datagrams destined for the mobile node through a tunnel to the care-
   of address.  After arriving at the end of the tunnel, each datagram
   is then delivered to the mobile node.

Table of Contents

 1. Introduction                                                       3
     1.1. Protocol Requirements . . . . . . . . . . . . . . . . . .    3
     1.2. Goals . . . . . . . . . . . . . . . . . . . . . . . . . .    4
     1.3. Assumptions . . . . . . . . . . . . . . . . . . . . . . .    4
     1.4. Applicability . . . . . . . . . . . . . . . . . . . . . .    4
     1.5. New Architectural Entities  . . . . . . . . . . . . . . .    5
     1.6. Terminology . . . . . . . . . . . . . . . . . . . . . . .    6
     1.7. Protocol Overview . . . . . . . . . . . . . . . . . . . .    8
     1.8. Specification Language  . . . . . . . . . . . . . . . . .   11
     1.9. Message Format and Protocol Extensibility . . . . . . . .   12
 2. Agent Discovery                                                   14
     2.1. Agent Advertisement . . . . . . . . . . . . . . . . . . .   14
           2.1.1. Mobility Agent Advertisement Extension  . . . . .   16
           2.1.2. Prefix-Lengths Extension  . . . . . . . . . . . .   18
           2.1.3. One-byte Padding Extension  . . . . . . . . . . .   19
     2.2. Agent Solicitation  . . . . . . . . . . . . . . . . . . .   19
     2.3. Foreign Agent and Home Agent Considerations . . . . . . .   19
           2.3.1. Advertised Router Addresses . . . . . . . . . . .   20



Perkins                     Standards Track                     [Page 1]

RFC 2002                  IP Mobility Support               October 1996


           2.3.2. Sequence Numbers and Rollover Handling  . . . . .   21
     2.4. Mobile Node Considerations  . . . . . . . . . . . . . . .   21
           2.4.1. Registration Required . . . . . . . . . . . . . .   22
           2.4.2. Move Detection  . . . . . . . . . . . . . . . . .   22
           2.4.3. Returning Home  . . . . . . . . . . . . . . . . .   24
           2.4.4. Sequence Numbers and Rollover Handling  . . . . .   24
 3. Registration                                                      24
     3.1. Registration Overview . . . . . . . . . . . . . . . . . .   25
     3.2. Authentication  . . . . . . . . . . . . . . . . . . . . .   26
     3.3. Registration Request  . . . . . . . . . . . . . . . . . .   26
     3.4. Registration Reply  . . . . . . . . . . . . . . . . . . .   29
     3.5. Registration Extensions . . . . . . . . . . . . . . . . .   32
           3.5.1. Computing Authentication Extension Values . . . .   32
           3.5.2. Mobile-Home Authentication Extension  . . . . . .   33
           3.5.3. Mobile-Foreign Authentication Extension . . . . .   33
           3.5.4. Foreign-Home Authentication Extension . . . . . .   34
     3.6. Mobile Node Considerations  . . . . . . . . . . . . . . .   34
           3.6.1. Sending Registration Requests . . . . . . . . . .   36
           3.6.2. Receiving Registration Replies  . . . . . . . . .   40
           3.6.3. Registration Retransmission . . . . . . . . . . .   42
     3.7. Foreign Agent Considerations  . . . . . . . . . . . . . .   43
           3.7.1. Configuration and Registration Tables . . . . . .   44
           3.7.2. Receiving Registration Requests . . . . . . . . .   44
           3.7.3. Receiving Registration Replies  . . . . . . . . .   47
     3.8. Home Agent Considerations . . . . . . . . . . . . . . . .   49
           3.8.1. Configuration and Registration Tables . . . . . .   49
           3.8.2. Receiving Registration Requests . . . . . . . . .   49
           3.8.3. Sending Registration Replies  . . . . . . . . . .   53
 4. Routing Considerations                                            55
     4.1. Encapsulation Types . . . . . . . . . . . . . . . . . . .   56
     4.2. Unicast Datagram Routing  . . . . . . . . . . . . . . . .   56
           4.2.1. Mobile Node Considerations  . . . . . . . . . . .   56
           4.2.2. Foreign Agent Considerations  . . . . . . . . . .   57
           4.2.3. Home Agent Considerations . . . . . . . . . . . .   58
     4.3. Broadcast Datagrams . . . . . . . . . . . . . . . . . . .   59
     4.4. Multicast Datagram Routing  . . . . . . . . . . . . . . .   60
     4.5. Mobile Routers  . . . . . . . . . . . . . . . . . . . . .   61
     4.6. ARP, Proxy ARP, and Gratuitous ARP  . . . . . . . . . . .   62
 5. Security Considerations                                           66
     5.1. Message Authentication Codes  . . . . . . . . . . . . . .   66
     5.2. Areas of Security Concern in this Protocol  . . . . . . .   66
     5.3. Key Management  . . . . . . . . . . . . . . . . . . . . .   67
     5.4. Picking Good Random Numbers . . . . . . . . . . . . . . .   67
     5.5. Privacy . . . . . . . . . . . . . . . . . . . . . . . . .   67
     5.6. Replay Protection for Registration Requests . . . . . . .   68
           5.6.1. Replay Protection using Timestamps  . . . . . . .   68
           5.6.2. Replay Protection using Nonces  . . . . . . . . .   69
 6. Acknowledgments                                                   71



Perkins                     Standards Track                     [Page 2]

RFC 2002                  IP Mobility Support               October 1996


 A. Patent Issues                                                     72
     A.1. IBM Patent #5,159,592 . . . . . . . . . . . . . . . . . .   72
     A.2. IBM Patent #5,148,479 . . . . . . . . . . . . . . . . . .   72
 B. Link-Layer Considerations                                         73
 C. TCP Considerations                                                73
     C.1. TCP Timers  . . . . . . . . . . . . . . . . . . . . . . .   73
     C.2. TCP Congestion Management . . . . . . . . . . . . . . . .   73
 D. Example Scenarios                                                 74
     D.1. Registering with a Foreign Agent Care-of Address  . . . .   74
     D.2. Registering with a Co-Located Care-of Address . . . . . .   75
     D.3. Deregistration  . . . . . . . . . . . . . . . . . . . . .   76
 E. Applicability of Prefix Lengths Extension                         76
Editor's Address                                                      79

1. Introduction

   IP version 4 assumes that a node's IP address uniquely identifies the
   node's point of attachment to the Internet.  Therefore, a node must
   be located on the network indicated by its IP address in order to
   receive datagrams destined to it; otherwise, datagrams destined to
   the node would be undeliverable.  For a node to change its point of
   attachment without losing its ability to communicate, currently one
   of the two following mechanisms must typically be employed:

      a)   the node must change its IP address whenever it changes its
           point of attachment, or

      b)   host-specific routes must be propagated throughout much of
           the Internet routing fabric.

   Both of these alternatives are often unacceptable.  The first makes
   it impossible for a node to maintain transport and higher-layer
   connections when the node changes location.  The second has obvious
   and severe scaling problems, especially relevant considering the
   explosive growth in sales of notebook (mobile) computers.

   A new, scalable, mechanism is required for accommodating node
   mobility within the Internet.  This document defines such a
   mechanism, which enables nodes to change their point of attachment to
   the Internet without changing their IP address.

1.1. Protocol Requirements

   A mobile node must be able to communicate with other nodes after
   changing its link-layer point of attachment to the Internet, yet
   without changing its IP address.





Perkins                     Standards Track                     [Page 3]

RFC 2002                  IP Mobility Support               October 1996


   A mobile node must be able to communicate with other nodes that do
   not implement these mobility functions.  No protocol enhancements are
   required in hosts or routers that are not acting as any of the new
   architectural entities introduced in Section 1.5.

   All messages used to update another node as to the location of a
   mobile node must be authenticated in order to protect against remote
   redirection attacks.

1.2. Goals

   The link by which a mobile node is directly attached to the Internet
   may often be a wireless link.  This link may thus have a
   substantially lower bandwidth and higher error rate than traditional
   wired networks.  Moreover, mobile nodes are likely to be battery
   powered, and minimizing power consumption is important.  Therefore,
   the number of administrative messages sent over the link by which a
   mobile node is directly attached to the Internet should be minimized,
   and the size of these messages should be kept as small as is
   reasonably possible.

1.3. Assumptions

   The protocols defined in this document place no additional
   constraints on the assignment of IP addresses.  That is, a mobile
   node can be assigned an IP address by the organization that owns the
   machine.

   This protocol assumes that mobile nodes will generally not change
   their point of attachment to the Internet more frequently than once
   per second.

   This protocol assumes that IP unicast datagrams are routed based on
   the destination address in the datagram header (and not, for example,
   by source address).

1.4. Applicability

   Mobile IP is intended to enable nodes to move from one IP subnet to
   another.  It is just as suitable for mobility across homogeneous
   media as it is for mobility across heterogeneous media.  That is,
   Mobile IP facilitates node movement from one Ethernet segment to
   another as well as it accommodates node movement from an Ethernet
   segment to a wireless LAN, as long as the mobile node's IP address
   remains the same after such a movement.

   One can think of Mobile IP as solving the "macro" mobility management
   problem.  It is less well suited for more "micro" mobility management



Perkins                     Standards Track                     [Page 4]

RFC 2002                  IP Mobility Support               October 1996


   applications -- for example, handoff amongst wireless transceivers,
   each of which covers only a very small geographic area.  As long as
   node movement does not occur between points of attachment on
   different IP subnets, link-layer mechanisms for mobility (i.e.,
   link-layer handoff) may offer faster convergence and far less
   overhead than Mobile IP.

1.5. New Architectural Entities

   Mobile IP introduces the following new functional entities:

      Mobile Node

         A host or router that changes its point of attachment from one
         network or subnetwork to another.  A mobile node may change its
         location without changing its IP address; it may continue to
         communicate with other Internet nodes at any location using its
         (constant) IP address, assuming link-layer connectivity to a
         point of attachment is available.

      Home Agent

         A router on a mobile node's home network which tunnels
         datagrams for delivery to the mobile node when it is away from
         home, and maintains current location information for the mobile
         node.

      Foreign Agent

         A router on a mobile node's visited network which provides
         routing services to the mobile node while registered.  The
         foreign agent detunnels and delivers datagrams to the mobile
         node that were tunneled by the mobile node's home agent.  For
         datagrams sent by a mobile node, the foreign agent may serve as
         a default router for registered mobile nodes.

   A mobile node is given a long-term IP address on a home network.
   This home address is administered in the same way as a "permanent" IP
   address is provided to a stationary host.  When away from its home
   network, a "care-of address" is associated with the mobile node and
   reflects the mobile node's current point of attachment.  The mobile
   node uses its home address as the source address of all IP datagrams
   that it sends, except where otherwise described in this document for
   datagrams sent for certain mobility management functions (e.g., as in
   Section 3.6.1.1).






Perkins                     Standards Track                     [Page 5]

RFC 2002                  IP Mobility Support               October 1996


1.6. Terminology

   This document frequently uses the following terms:

      Agent Advertisement
               An advertisement message constructed by attaching a
               special Extension to a router advertisement [4] message.

      Care-of Address
               The termination point of a tunnel toward a mobile node,
               for datagrams forwarded to the mobile node while it is
               away from home.  The protocol can use two different types
               of care-of address:  a "foreign agent care-of address" is
               an address of a foreign agent with which the mobile node
               is registered, and a "co-located care-of address" is an
               externally obtained local address which the mobile node
               has associated with one of its own network interfaces.

      Correspondent Node
               A peer with which a mobile node is communicating.  A
               correspondent node may be either mobile or stationary.

      Foreign Network
               Any network other than the mobile node's Home Network.

      Home Address
               An IP address that is assigned for an extended period of
               time to a mobile node.  It remains unchanged regardless
               of where the node is attached to the Internet.

      Home Network
               A network, possibly virtual, having a network prefix
               matching that of a mobile node's home address.  Note that
               standard IP routing mechanisms will deliver datagrams
               destined to a mobile node's Home Address to the mobile
               node's Home Network.

      Link     A facility or medium over which nodes can communicate at
               the link layer.  A link underlies the network layer.

      Link-Layer Address
               The address used to identify an endpoint of some
               communication over a physical link.  Typically, the
               Link-Layer address is an interface's Media Access Control
               (MAC) address.

      Mobility Agent
               Either a home agent or a foreign agent.



Perkins                     Standards Track                     [Page 6]

RFC 2002                  IP Mobility Support               October 1996


      Mobility Binding
               The association of a home address with a care-of address,
               along with the remaining lifetime of that association.

      Mobility Security Association
               A collection of security contexts, between a pair
               of nodes, which may be applied to Mobile IP protocol
               messages exchanged between them.  Each context indicates
               an authentication algorithm and mode (Section 5.1), a
               secret (a shared key, or appropriate public/private
               key pair), and a style of replay protection in use
               (Section 5.6).

      Node     A host or a router.

      Nonce    A randomly chosen value, different from previous choices,
               inserted in a message to protect against replays.

      Security Parameter Index (SPI)
               An index identifying a security context between a pair
               of nodes among the contexts available in the Mobility
               Security Association.  SPI values 0 through 255 are
               reserved and MUST NOT be used in any Mobility Security
               Association.

      Tunnel   The path followed by a datagram while it is encapsulated.
               The model is that, while it is encapsulated, a datagram
               is routed to a knowledgeable decapsulating agent, which
               decapsulates the datagram and then correctly delivers it
               to its ultimate destination.

      Virtual Network
               A network with no physical instantiation beyond a router
               (with a physical network interface on another network).
               The router (e.g., a home agent) generally advertises
               reachability to the virtual network using conventional
               routing protocols.

      Visited Network
               A network other than a mobile node's Home Network, to
               which the mobile node is currently connected.

      Visitor List
               The list of mobile nodes visiting a foreign agent.







Perkins                     Standards Track                     [Page 7]

RFC 2002                  IP Mobility Support               October 1996


1.7. Protocol Overview

   The following support services are defined for Mobile IP:

      Agent Discovery
               Home agents and foreign agents may advertise their
               availability on each link for which they provide service.
               A newly arrived mobile node can send a solicitation on
               the link to learn if any prospective agents are present.

      Registration
               When the mobile node is away from home, it registers
               its care-of address with its home agent.  Depending on
               its method of attachment, the mobile node will register
               either directly with its home agent, or through a foreign
               agent which forwards the registration to the home agent.

   The following steps provide a rough outline of operation of the
   Mobile IP protocol:

    -  Mobility agents (i.e., foreign agents and home agents) advertise
       their presence via Agent Advertisement messages (Section 2).  A
       mobile node may optionally solicit an Agent Advertisement message
       from any locally attached mobility agents through an Agent
       Solicitation message.

    -  A mobile node receives these Agent Advertisements and determines
       whether it is on its home network or a foreign network.

    -  When the mobile node detects that it is located on its home
       network, it operates without mobility services.  If returning
       to its home network from being registered elsewhere, the mobile
       node deregisters with its home agent, through exchange of a
       Registration Request and Registration Reply message with it.

    -  When a mobile node detects that it has moved to a foreign
       network, it obtains a care-of address on the foreign network.
       The care-of address can either be determined from a foreign
       agent's advertisements (a foreign agent care-of address), or by
       some external assignment mechanism such as DHCP [6] (a co-located
       care-of address).

    -  The mobile node operating away from home then registers its
       new care-of address with its home agent through exchange of a
       Registration Request and Registration Reply message with it,
       possibly via a foreign agent (Section 3).





Perkins                     Standards Track                     [Page 8]

RFC 2002                  IP Mobility Support               October 1996


    -  Datagrams sent to the mobile node's home address are intercepted
       by its home agent, tunneled by the home agent to the mobile
       node's care-of address, received at the tunnel endpoint (either
       at a foreign agent or at the mobile node itself), and finally
       delivered to the mobile node (Section 4.2.3).

    -  In the reverse direction, datagrams sent by the mobile node
       are generally delivered to their destination using standard IP
       routing mechanisms, not necessarily passing through the home
       agent.

   When away from home, Mobile IP uses protocol tunneling to hide a
   mobile node's home address from intervening routers between its home
   network and its current location.  The tunnel terminates at the
   mobile node's care-of address.  The care-of address must be an
   address to which datagrams can be delivered via conventional IP
   routing.  At the care-of address, the original datagram is removed
   from the tunnel and delivered to the mobile node.

   Mobile IP provides two alternative modes for the acquisition of a
   care-of address:

    -  A "foreign agent care-of address" is a care-of address provided
       by a foreign agent through its Agent Advertisement messages.  In
       this case, the care-of address is an IP address of the foreign
       agent.  In this mode, the foreign agent is the endpoint of the
       tunnel and, upon receiving tunneled datagrams, decapsulates them
       and delivers the inner datagram to the mobile node.  This mode
       of acquisition is preferred because it allows many mobile nodes
       to share the same care-of address and therefore does not place
       unnecessary demands on the already limited IPv4 address space.

    -  A "co-located care-of address" is a care-of address acquired
       by the mobile node as a local IP address through some external
       means, which the mobile node then associates with one of its own
       network interfaces.  The address may be dynamically acquired as
       a temporary address by the mobile node such as through DHCP [6],
       or may be owned by the mobile node as a long-term address for its
       use only while visiting some foreign network.  Specific external
       methods of acquiring a local IP address for use as a co-located
       care-of address are beyond the scope of this document.  When
       using a co-located care-of address, the mobile node serves as the
       endpoint of the tunnel and itself performs decapsulation of the
       datagrams tunneled to it.

   The mode of using a co-located care-of address has the advantage that
   it allows a mobile node to function without a foreign agent, for
   example, in networks that have not yet deployed a foreign agent.



Perkins                     Standards Track                     [Page 9]

RFC 2002                  IP Mobility Support               October 1996


   It does, however, place additional burden on the IPv4 address space
   because it requires a pool of addresses within the foreign network to
   be made available to visiting mobile nodes.  It is difficult to
   efficiently maintain pools of addresses for each subnet that may
   permit mobile nodes to visit.

   It is important to understand the distinction between the care-of
   address and the foreign agent functions.  The care-of address is
   simply the endpoint of the tunnel.  It might indeed be an address of
   a foreign agent (a foreign agent care-of address), but it might
   instead be an address temporarily acquired by the mobile node (a co-
   located care-of address).  A foreign agent, on the other hand, is a
   mobility agent that provides services to mobile nodes.  See Sections
   3.7 and 4.2.2 for additional details.

   A home agent MUST be able to attract and intercept datagrams that are
   destined to the home address of any of its registered mobile nodes.
   Using the proxy and gratuitous ARP mechanisms described in Section
   4.6, this requirement can be satisfied if the home agent has a
   network interface on the link indicated by the mobile node's home
   address.  Other placements of the home agent relative to the mobile
   node's home location MAY also be possible using other mechanisms for
   intercepting datagrams destined to the mobile node's home address.
   Such placements are beyond the scope of this document.

   Similarly, a mobile node and a prospective or current foreign agent
   MUST be able to exchange datagrams without relying on standard IP
   routing mechanisms; that is, those mechanisms which make forwarding
   decisions based upon the network-prefix of the destination address in
   the IP header.  This requirement can be satisfied if the foreign
   agent and the visiting mobile node have an interface on the same
   link.  In this case, the mobile node and foreign agent simply bypass
   their normal IP routing mechanism when sending datagrams to each
   other, addressing the underlying link-layer packets to their
   respective link-layer addresses.  Other placements of the foreign
   agent relative to the mobile node MAY also be possible using other
   mechanisms to exchange datagrams between these nodes, but such
   placements are beyond the scope of this document.

   If a mobile node is using a co-located care-of address (as described
   in (b) above), the mobile node MUST be located on the link identified
   by the network prefix of this care-of address.  Otherwise, datagrams
   destined to the care-of address would be undeliverable.

   For example, the figure below illustrates the routing of datagrams to
   and from a mobile node away from home, once the mobile node has
   registered with its home agent.  In the figure below, the mobile node
   is using a foreign agent care-of address:



Perkins                     Standards Track                    [Page 10]

RFC 2002                  IP Mobility Support               October 1996


                2) Datagram is intercepted   3) Datagram is
                   by home agent and            detunneled and
                   is tunneled to the           delivered to the
                   care-of address.             mobile node.

                     +-----+          +-------+         +------+
                     |home | =======> |foreign| ------> |mobile|
                     |agent|          | agent | <------ | node |
                     +-----+          +-------+         +------+
     1) Datagram to    /|\         /
        mobile node     |        /   4) For datagrams sent by the
        arrives on      |      /        mobile node, standard IP
        home network    |    /          routing delivers each to its
        via standard    |  |_           destination.  In this figure,
        IP routing.   +----+            the foreign agent is the
                      |host|            mobile node's default router.
                      +----+

1.8. Specification Language

   In this document, several words are used to signify the requirements
   of the specification.  These words are often capitalized.

      MUST       This word, or the adjective "required", means that
                 the definition is an absolute requirement of the
                 specification.

      MUST NOT   This phrase means that the definition is an absolute
                 prohibition of the specification.

      SHOULD     This word, or the adjective "recommended", means
                 that, in some circumstances, valid reasons may exist
                 to ignore this item, but the full implications must
                 be understood and carefully weighed before choosing
                 a different course.  Unexpected results may result
                 otherwise.

      MAY        This word, or the adjective "optional", means that this
                 item is one of an allowed set of alternatives.  An
                 implementation which does not include this option MUST
                 be prepared to interoperate with another implementation
                 which does include the option.









Perkins                     Standards Track                    [Page 11]

RFC 2002                  IP Mobility Support               October 1996


      silently discard
                 The implementation discards the datagram without
                 further processing, and without indicating an error
                 to the sender.  The implementation SHOULD provide the
                 capability of logging the error, including the contents
                 of the discarded datagram, and SHOULD record the event
                 in a statistics counter.

1.9. Message Format and Protocol Extensibility

   Mobile IP defines a set of new control messages, sent with UDP [17]
   using well-known port number 434.  Currently, the following two
   message types are defined:

      1  Registration Request
      3  Registration Reply

   Up-to-date values for the message types for Mobile IP control
   messages are specified in the most recent "Assigned Numbers" [20].

   In addition, for Agent Discovery, Mobile IP makes use of the existing
   Router Advertisement and Router Solicitation messages defined for
   ICMP Router Discovery [4].

   Mobile IP defines a general Extension mechanism to allow optional
   information to be carried by Mobile IP control messages or by ICMP
   Router Discovery messages.  Each of these Extensions (with one
   exception) is encoded in the following Type-Length-Value format:

    0                   1                   2
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
   |     Type      |    Length     |    Data ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

      Type     Indicates the particular type of Extension.

      Length   Indicates the length (in bytes) of the data field within
               this Extension.  The length does NOT include the Type and
               Length bytes.

      Data     The particular data associated with this Extension.  This
               field may be zero or more bytes in length.  The format
               and length of the data field is determined by the type
               and length fields.






Perkins                     Standards Track                    [Page 12]

RFC 2002                  IP Mobility Support               October 1996


   Extensions allow variable amounts of information to be carried within
   each datagram.  The end of the list of Extensions is indicated by the
   total length of the IP datagram.

   Two separately maintained sets of numbering spaces, from which
   Extension Type values are allocated, are used in Mobile IP:

    -  The first set consists of those Extensions which may appear only
       in Mobile IP control messages (those sent to and from UDP port
       number 434).  Currently, the following Types are defined for
       Extensions appearing in Mobile IP control messages:

          32  Mobile-Home Authentication
          33  Mobile-Foreign Authentication
          34  Foreign-Home Authentication

    -  The second set consists of those extensions which may appear only
       in ICMP Router Discovery messages [4].  Currently, Mobile IP
       defines the following Types for Extensions appearing in ICMP
       Router Discovery messages:

           0  One-byte Padding (encoded with no Length nor Data field)
          16  Mobility Agent Advertisement
          19  Prefix-Lengths

   Each individual Extension is described in detail in a separate
   section later in this document.  Up-to-date values for these
   Extension Type numbers are specified in the most recent "Assigned
   Numbers" [20].

   Due to the separation (orthogonality) of these sets, it is
   conceivable that two Extensions that are defined at a later date
   could have identical Type values, so long as one of the Extensions
   may be used only in Mobile IP control messages and the other may be
   used only in ICMP Router Discovery messages.

   When an Extension numbered in either of these sets within the range 0
   through 127 is encountered but not recognized, the message containing
   that Extension MUST be silently discarded.  When an Extension
   numbered in the range 128 through 255 is encountered which is not
   recognized, that particular Extension is ignored, but the rest of the
   Extensions and message data MUST still be processed.  The Length
   field of the Extension is used to skip the Data field in searching
   for the next Extension.







Perkins                     Standards Track                    [Page 13]

RFC 2002                  IP Mobility Support               October 1996


2. Agent Discovery

   Agent Discovery is the method by which a mobile node determines
   whether it is currently connected to its home network or to a foreign
   network, and by which a mobile node can detect when it has moved from
   one network to another.  When connected to a foreign network, the
   methods specified in this section also allow the mobile node to
   determine the foreign agent care-of address being offered by each
   foreign agent on that network.

   Mobile IP extends ICMP Router Discovery [4] as its primary mechanism
   for Agent Discovery.  An Agent Advertisement is formed by including a
   Mobility Agent Advertisement Extension in an ICMP Router
   Advertisement message (Section 2.1).  An Agent Solicitation message
   is identical to an ICMP Router Solicitation, except that its IP TTL
   MUST be set to 1 (Section 2.2).  This section describes the message
   formats and procedures by which mobile nodes, foreign agents, and
   home agents cooperate to realize Agent Discovery.

   Agent Advertisement and Agent Solicitation may not be necessary for
   link layers that already provide this functionality.  The method by
   which mobile nodes establish link-layer connections with prospective
   agents is outside the scope of this document (but see Appendix B).
   The procedures described below assume that such link-layer
   connectivity has already been established.

   No authentication is required for Agent Advertisement and Agent
   Solicitation messages.  They MAY be authenticated using the IP
   Authentication Header [1], which is unrelated to the messages
   described in this document.  Further specification of the way in
   which Advertisement and Solicitation messages may be authenticated is
   outside of the scope of this document.

2.1. Agent Advertisement

   Agent Advertisements are transmitted by a mobility agent to advertise
   its services on a link.  Mobile nodes use these advertisements to
   determine their current point of attachment to the Internet.  An
   Agent Advertisement is an ICMP Router Advertisement that has been
   extended to also carry an Mobility Agent Advertisement Extension
   (Section 2.1.1) and, optionally, a Prefix-Lengths Extension (Section
   2.1.2), One-byte Padding Extension (Section 2.1.3), or other
   Extensions that might be defined in the future.

   Within an Agent Advertisement message, ICMP Router Advertisement
   fields of the message are required to conform to the following
   additional specifications:




Perkins                     Standards Track                    [Page 14]

RFC 2002                  IP Mobility Support               October 1996


    -  Link-Layer Fields

          Destination Address
                   The link-layer destination address of a unicast
                   Agent Advertisement MUST be the same as the source
                   link-layer address of the Agent Solicitation which
                   prompted the Advertisement.

    -  IP Fields

          TTL      The TTL for all Agent Advertisements MUST be set
                   to 1.

          Destination Address
                   As specified for ICMP Router Discovery [4], the IP
                   destination address of an Agent Advertisement MUST
                   be either the "all systems on this link" multicast
                   address (224.0.0.1) [5] or the "limited broadcast"
                   address (255.255.255.255).  The subnet-directed
                   broadcast address of the form <prefix>.<-1> cannot be
                   used since mobile nodes will not generally know the
                   prefix of the foreign network.

    -  ICMP Fields

          Code     The Code field of the agent advertisement is
                   interpreted as follows:

                    0 The mobility agent handles common traffic -- that
                      is, it acts as a router for IP datagrams not
                      necessarily related to mobile nodes.
                   16 The mobility agent does not route common traffic.
                      However, all foreign agents MUST (minimally)
                      forward to a default router any datagrams received
                      from a registered mobile node (Section 4.2.2).

          Lifetime
                   The maximum length of time that the Advertisement
                   is considered valid in the absence of further
                   Advertisements.

          Router Address(es)
                   See Section 2.3.1 for a discussion of the addresses
                   that may appear in this portion of the Agent
                   Advertisement.






Perkins                     Standards Track                    [Page 15]

RFC 2002                  IP Mobility Support               October 1996


          Num Addrs
                   The number of Router Addresses advertised in this
                   message.  Note that in an Agent Advertisement
                   message, the number of router addresses specified in
                   the ICMP Router Advertisement portion of the message
                   MAY be set to 0.  See Section 2.3.1 for details.

   If sent periodically, the nominal interval at which Agent
   Advertisements are sent SHOULD be 1/3 of the advertisement Lifetime
   given in the ICMP header.  This allows a mobile node to miss three
   successive advertisements before deleting the agent from its list of
   valid agents.  The actual transmission time for each advertisement
   SHOULD be slightly randomized [4] in order to avoid synchronization
   and subsequent collisions with other Agent Advertisements that may be
   sent by other agents (or with other Router Advertisements sent by
   other routers).  Note that this field has no relation to the
   "Registration Lifetime" field within the Mobility Agent Advertisement
   Extension defined below.

2.1.1. Mobility Agent Advertisement Extension

   The Mobility Agent Advertisement Extension follows the ICMP Router
   Advertisement fields.  It is used to indicate that an ICMP Router
   Advertisement message is also an Agent Advertisement being sent by a
   mobility agent.  The Mobility Agent Advertisement Extension is
   defined as follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Type      |    Length     |        Sequence Number        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    Registration Lifetime      |R|B|H|F|M|G|V|    reserved     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  zero or more Care-of Addresses               |
   |                              ...                              |

      Type     16

      Length   (6 + 4*N), where N is the number of care-of addresses
               advertised.

      Sequence Number
               The count of Agent Advertisement messages sent since the
               agent was initialized (Section 2.3.2).






Perkins                     Standards Track                    [Page 16]

RFC 2002                  IP Mobility Support               October 1996


      Registration Lifetime
               The longest lifetime (measured in seconds) that this
               agent is willing to accept in any Registration Request.
               A value of 0xffff indicates infinity.  This field has no
               relation to the "Lifetime" field within the ICMP Router
               Advertisement portion of the Agent Advertisement.

      R        Registration required.  Registration with this foreign
               agent (or another foreign agent on this link) is required
               rather than using a co-located care-of address.

      B        Busy.  The foreign agent will not accept registrations
               from additional mobile nodes.

      H        Home agent.  This agent offers service as a home agent
               on the link on which this Agent Advertisement message is
               sent.

      F        Foreign agent.  This agent offers service as a foreign
               agent on the link on which this Agent Advertisement
               message is sent.

      M        Minimal encapsulation.  This agent implements receiving
               tunneled datagrams that use minimal encapsulation [15].

      G        GRE encapsulation.  This agent implements receiving
               tunneled datagrams that use GRE encapsulation [8].

      V        Van Jacobson header compression.  This agent supports use
               of Van Jacobson header compression [10] over the link
               with any registered mobile node.

      reserved
               Sent as zero; ignored on reception.

      Care-of Address(es)
               The advertised foreign agent care-of address(es) provided
               by this foreign agent.  An Agent Advertisement MUST
               include at least one care-of address if the 'F' bit
               is set.  The number of care-of addresses present is
               determined by the Length field in the Extension.

   A home agent MUST always be prepared to serve the mobile nodes for
   which it is the home agent.  A foreign agent may at times be too busy
   to serve additional mobile nodes; even so, it must continue to send
   Agent Advertisements, so that any mobile nodes already registered
   with it will know that they have not moved out of range of the
   foreign agent and that the foreign agent has not failed.  A foreign



Perkins                     Standards Track                    [Page 17]

RFC 2002                  IP Mobility Support               October 1996


   agent may indicate that it is "too busy" to allow new mobile nodes to
   register with it, by setting the 'B' bit in its Agent Advertisements.
   An Agent Advertisement message MUST NOT have the 'B' bit set if the
   'F' bit is not also set, and at least one of the 'F' bit and the 'H'
   bit MUST be set in any Agent Advertisement message sent.

   When a foreign agent wishes to require registration even from those
   mobile nodes which have acquired a co-located care-of address, it
   sets the 'R' bit to one.  Because this bit applies only to foreign
   agents, an agent MUST NOT set the 'R' bit to one unless the 'F' bit
   is also set to one.

2.1.2. Prefix-Lengths Extension

   The Prefix-Lengths Extension MAY follow the Mobility Agent
   Advertisement Extension.  It is used to indicate the number of bits
   of network prefix that applies to each Router Address listed in the
   ICMP Router Advertisement portion of the Agent Advertisement.  Note
   that the prefix lengths given DO NOT apply to care-of address(es)
   listed in the Mobility Agent Advertisement Extension.  The Prefix-
   Lengths Extension is defined as follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Type      |    Length     | Prefix Length |      ....
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Type     19 (Prefix-Lengths Extension)

      Length   N, where N is the value of the Num Addrs field in
               the ICMP Router Advertisement portion of the Agent
               Advertisement.

      Prefix Length(s)
               The number of leading bits that define the network number
               of the corresponding Router Address listed in the ICMP
               Router Advertisement portion of the message.  The prefix
               length for each Router Address is encoded as a separate
               byte, in the order that the Router Addresses are listed
               in the ICMP Router Advertisement portion of the message.

   See Section 2.4.2 for information about how the Prefix Lengths
   Extension MAY be used by a mobile node when determining whether it
   has moved.  See Appendix E for implementation details about the use
   of this Extension.





Perkins                     Standards Track                    [Page 18]

RFC 2002                  IP Mobility Support               October 1996


2.1.3. One-byte Padding Extension

   Some IP protocol implementations insist upon padding ICMP messages to
   an even number of bytes.  If the ICMP length of an Agent
   Advertisement is odd, this Extension MAY be included in order to make
   the ICMP length even.  Note that this Extension is NOT intended to be
   a general-purpose Extension to be included in order to word- or
   long-align the various fields of the Agent Advertisement.  An Agent
   Advertisement SHOULD NOT include more than one One-byte Padding
   Extension and if present, this Extension SHOULD be the last Extension
   in the Agent Advertisement.

   Note that unlike other Extensions used in Mobile IP, the One-byte
   Padding Extension is encoded as a single byte, with no "Length" nor
   "Data" field present.  The One-byte Padding Extension is defined as
   follows:

    0 1 2 3 4 5 6 7
   +-+-+-+-+-+-+-+-+
   |     Type      |
   +-+-+-+-+-+-+-+-+

      Type 0 (One-byte Padding Extension)

2.2. Agent Solicitation

   An Agent Solicitation is identical to an ICMP Router Solicitation
   with the further restriction that the IP TTL Field MUST be set to 1.

2.3. Foreign Agent and Home Agent Considerations

   Any mobility agent which cannot be discovered by a link-layer
   protocol MUST send Agent Advertisements.  An agent which can be
   discovered by a link-layer protocol SHOULD also implement Agent
   Advertisements.  However, the Advertisements need not be sent, except
   when the site policy requires registration with the agent (i.e., when
   the 'R' bit is set), or as a response to a specific Agent
   Solicitation.  All mobility agents SHOULD respond to Agent
   Solicitations.

   The same procedures, defaults, and constants are used in Agent
   Advertisement messages and Agent Solicitation messages as specified
   for ICMP Router Discovery [4], except that:

    -  a mobility agent MUST limit the rate at which it sends broadcast
       or multicast Agent Advertisements; a recommended maximum rate is
       once per second, AND




Perkins                     Standards Track                    [Page 19]

RFC 2002                  IP Mobility Support               October 1996


    -  a mobility agent that receives a Router Solicitation MUST NOT
       require that the IP Source Address is the address of a neighbor
       (i.e., an address that matches one of the router's own addresses
       on the arrival interface, under the subnet mask associated with
       that address of the router).

    -  a mobility agent MAY be configured to send Agent Advertisements
       only in response to an Agent Solicitation message.

   If the home network is not a virtual network, then the home agent for
   any mobile node SHOULD be located on the link identified by the
   mobile node's home address, and Agent Advertisement messages sent by
   the home agent on this link MUST have the 'H' bit set.  In this way,
   mobile nodes on their own home network will be able to determine that
   they are indeed at home.  Any Agent Advertisement messages sent by
   the home agent on another link to which it may be attached (if it is
   a mobility agent serving more than one link), MUST NOT have the 'H'
   bit set, unless the home agent also serves as a home agent (to other
   mobile nodes) on that other link.

   If the home network is a virtual network, the home network has no
   physical realization external to the home agent itself.  In this
   case, there is no physical network link on which to send Agent
   Advertisement messages advertising the home agent.  Mobile nodes for
   which this is the home network are always treated as being away from
   home.

   On a particular subnet, either all mobility agents MUST include the
   Prefix-Lengths Extension or all of them MUST NOT include this
   Extension.  Equivalently, it is prohibited for some agents on a given
   subnet to include the Extension but for others not to include it.
   Otherwise, one of the move detection algorithms designed for mobile
   nodes will not function properly (Section 2.4.2).

2.3.1. Advertised Router Addresses

   The ICMP Router Advertisement portion of the Agent Advertisement MAY
   contain one or more router addresses.  Thus, an agent MAY include one
   of its own addresses in the advertisement.  A foreign agent MAY
   discourage use of this address as a default router by setting the
   preference to a low value and by including the address of another
   router in the advertisement (with a correspondingly higher
   preference).  Nevertheless, a foreign agent MUST route datagrams it
   receives from registered mobile nodes (Section 4.2.2).







Perkins                     Standards Track                    [Page 20]

RFC 2002                  IP Mobility Support               October 1996


2.3.2. Sequence Numbers and Rollover Handling

   The sequence number in Agent Advertisements ranges from 0 to 0xffff.
   After booting, an agent MUST use the number 0 for its first
   advertisement.  Each subsequent advertisement MUST use the sequence
   number one greater, with the exception that the sequence number
   0xffff MUST be followed by sequence number 256.  In this way, mobile
   nodes can distinguish reductions in sequence numbers that result from
   reboots, from reductions that result in rollover of the sequence
   number after it attains the value 0xffff.

2.4. Mobile Node Considerations

   Every mobile node MUST implement Agent Solicitation.  Solicitations
   SHOULD only be sent in the absence of Agent Advertisements and when a
   care-of address has not been determined through a link-layer protocol
   or other means.  The mobile node uses the same procedures, defaults,
   and constants for Agent Solicitation as specified for ICMP Router
   Solicitation messages [4], except that the mobile node MAY solicit
   more often than once every three seconds, and that a mobile node that
   is currently not connected to any foreign agent MAY solicit more
   times than MAX_SOLICITATIONS.

   The rate at which a mobile node sends Solicitations MUST be limited
   by the mobile node.  The mobile node MAY send three initial
   Solicitations at a maximum rate of one per second while searching for
   an agent.  After this, the rate at which Solicitations are sent MUST
   be reduced so as to limit the overhead on the local link.  Subsequent
   Solicitations MUST be sent using a binary exponential backoff
   mechanism, doubling the interval between consecutive Solicitations,
   up to a maximum interval.  The maximum interval SHOULD be chosen
   appropriately based upon the characteristics of the media over which
   the mobile node is soliciting.  This maximum interval SHOULD be at
   least one minute between Solicitations.

   While still searching for an agent, the mobile node MUST NOT increase
   the rate at which it sends Solicitations unless it has received a
   positive indication that it has moved to a new link.  After
   successfully registering with an agent, the mobile node SHOULD also
   increase the rate at which it will send Solicitations when it next
   begins searching for a new agent with which to register.  The
   increased solicitation rate MAY revert to the maximum rate, but then
   MUST be limited in the manner described above.  In all cases, the
   recommended solicitation intervals are nominal values.  Mobile nodes
   MUST randomize their solicitation times around these nominal values
   as specified for ICMP Router Discovery [4].





Perkins                     Standards Track                    [Page 21]

RFC 2002                  IP Mobility Support               October 1996


   Mobile nodes MUST process received Agent Advertisements.  A mobile
   node can distinguish an Agent Advertisement message from other uses
   of the ICMP Router Advertisement message by examining the number of
   advertised addresses and the IP Total Length field.  When the IP
   total length indicates that the ICMP message is longer than needed
   for the number of advertised addresses, the remaining data is
   interpreted as one or more Extensions.  The presence of a Mobility
   Agent Advertisement Extension identifies the advertisement as an
   Agent Advertisement.

   When multiple methods of agent discovery are in use, the mobile node
   SHOULD first attempt registration with agents including Mobility
   Agent Advertisement Extensions in their advertisements, in preference
   to those discovered by other means.  This preference maximizes the
   likelihood that the registration will be recognized, thereby
   minimizing the number of registration attempts.

2.4.1. Registration Required

   When the mobile node receives an Agent Advertisement with the 'R' bit
   set, the mobile node SHOULD register through the foreign agent, even
   when the mobile node might be able to acquire its own co-located
   care-of address.  This feature is intended to allow sites to enforce
   visiting policies (such as accounting) which require exchanges of
   authorization.

2.4.2. Move Detection

   Two primary mechanisms are provided for mobile nodes to detect when
   they have moved from one subnet to another.  Other mechanisms MAY
   also be used.  When the mobile node detects that it has moved, it
   SHOULD register (Section 3) with a suitable care-of address on the
   new foreign network.  However, the mobile node MUST NOT register more
   frequently than once per second on average, as specified in Section
   3.6.3.
















Perkins                     Standards Track                    [Page 22]

RFC 2002                  IP Mobility Support               October 1996


2.4.2.1. Algorithm 1

   The first method of move detection is based upon the Lifetime field
   within the main body of the ICMP Router Advertisement portion of the
   Agent Advertisement.  A mobile node SHOULD record the Lifetime
   received in any Agent Advertisements, until that Lifetime expires.
   If the mobile node fails to receive another advertisement from the
   same agent within the specified Lifetime, it SHOULD assume that it
   has lost contact with that agent.  If the mobile node has previously
   received an Agent Advertisement from another agent for which the
   Lifetime field has not yet expired, the mobile node MAY immediately
   attempt registration with that other agent.  Otherwise, the mobile
   node SHOULD attempt to discover a new agent with which to register.

2.4.2.2. Algorithm 2

   The second method uses network prefixes.  The Prefix-Lengths
   Extension MAY be used in some cases by a mobile node to determine
   whether or not a newly received Agent Advertisement was received on
   the same subnet as the mobile node's current care-of address.  If the
   prefixes differ, the mobile node MAY assume that it has moved.  If a
   mobile node is currently using a foreign agent care-of address, the
   mobile node SHOULD NOT use this method of move detection unless both
   the current agent and the new agent include the Prefix-Lengths
   Extension in their respective Agent Advertisements; if this Extension
   is missing from one or both of the advertisements, this method of
   move detection SHOULD NOT be used.  Similarly, if a mobile node is
   using a co-located care-of address, it SHOULD not use this method of
   move detection unless the new agent includes the Prefix-Lengths
   Extension in its Advertisement and the mobile node knows the network
   prefix of its current co-located care-of address.  On the expiration
   of its current registration, if this method indicates that the mobile
   node has moved, rather than re-registering with its current care-of
   address, a mobile node MAY choose instead to register with a the
   foreign agent sending the new Advertisement with the different
   network prefix.  The Agent Advertisement on which the new
   registration is based MUST NOT have expired according to its Lifetime
   field.













Perkins                     Standards Track                    [Page 23]

RFC 2002                  IP Mobility Support               October 1996


2.4.3. Returning Home

   A mobile node can detect that it has returned to its home network
   when it receives an Agent Advertisement from its own home agent.  If
   so, it SHOULD deregister with its home agent (Section 3).  Before
   attempting to deregister, the mobile node SHOULD configure its
   routing table appropriately for its home network (Section 4.2.1).  In
   addition, if the home network is using ARP [16], the mobile node MUST
   follow the procedures described in Section 4.6 with regard to ARP,
   proxy ARP, and gratuitous ARP.

2.4.4. Sequence Numbers and Rollover Handling

   If a mobile node detects two successive values of the sequence number
   in the Agent Advertisements from the foreign agent with which it is
   registered, the second of which is less than the first and inside the
   range 0 to 255, the mobile node SHOULD register again.  If the second
   value is less than the first but is greater than or equal to 256, the
   mobile node SHOULD assume that the sequence number has rolled over
   past its maximum value (0xffff), and that reregistration is not
   necessary (Section 2.3).

3. Registration

   Mobile IP registration provides a flexible mechanism for mobile nodes
   to communicate their current reachability information to their home
   agent.  It is the method by which mobile nodes:

    -  request forwarding services when visiting a foreign network,

    -  inform their home agent of their current care-of address,

    -  renew a registration which is due to expire, and/or

    -  deregister when they return home.

   Registration messages exchange information between a mobile node,
   (optionally) a foreign agent, and the home agent.  Registration
   creates or modifies a mobility binding at the home agent, associating
   the mobile node's home address with its care-of address for the
   specified Lifetime.










Perkins                     Standards Track                    [Page 24]

RFC 2002                  IP Mobility Support               October 1996


   Several other (optional) capabilities are available through the
   registration procedure, which enable a mobile node to:

    -  maintain multiple simultaneous registrations, so that a copy of
       each datagram will be tunneled to each active care-of address

    -  deregister specific care-of addresses while retaining other
       mobility bindings, and

    -  discover the address of a home agent if the mobile node is not
       configured with this information.

3.1. Registration Overview

   Mobile IP defines two different registration procedures, one via a
   foreign agent that relays the registration to the mobile node's home
   agent, and one directly with the mobile node's home agent.  The
   following rules determine which of these two registration procedures
   to use in any particular circumstance:

    -  If a mobile node is registering a foreign agent care-of address,
       the mobile node MUST register via that foreign agent.

    -  If a mobile node is using a co-located care-of address, and
       receives an Agent Advertisement from a foreign agent on the
       link on which it is using this care-of address, the mobile node
       SHOULD register via that foreign agent (or via another foreign
       agent on this link) if the 'R' bit is set in the received Agent
       Advertisement message.

    -  If a mobile node is otherwise using a co-located care-of address,
       the mobile node MUST register directly with its home agent.

    -  If a mobile node has returned to its home network and is
       (de)registering with its home agent, the mobile node MUST
       register directly with its home agent.

   Both registration procedures involve the exchange of Registration
   Request and Registration Reply messages (Sections 3.3 and 3.4).  When
   registering via a foreign agent, the registration procedure requires
   the following four messages:

      a)   The mobile node sends a Registration Request to the
           prospective foreign agent to begin the registration process.

      b)   The foreign agent processes the Registration Request and then
           relays it to the home agent.




Perkins                     Standards Track                    [Page 25]

RFC 2002                  IP Mobility Support               October 1996


      c)   The home agent sends a Registration Reply to the foreign
           agent to grant or deny the Request.

      d)   The foreign agent processes the Registration Reply and then
           relays it to the mobile node to inform it of the disposition
           of its Request.

   When the mobile node instead registers directly with its home agent,
   the registration procedure requires only the following two messages:

         a)   The mobile node sends a Registration Request to the home
              agent.

         b)   The home agent sends a Registration Reply to the mobile
              node, granting or denying the Request.

   The registration messages defined in Sections 3.3 and 3.4 use the
   User Datagram Protocol (UDP) [17].  A nonzero UDP checksum SHOULD be
   included in the header, and MUST be checked by the recipient.

3.2. Authentication

   Each mobile node, foreign agent, and home agent MUST be able to
   support a mobility security association for mobile entities, indexed
   by their SPI and IP address.  In the case of the mobile node, this
   must be its Home Address.  See Section 5.1 for requirements for
   support of authentication algorithms.  Registration messages between
   a mobile node and its home agent MUST be authenticated with the
   Mobile-Home Authentication Extension (Section 3.5.2).  This Extension
   immediately follows all non-authentication Extensions, except those
   foreign agent-specific Extensions which may be added to the message
   after the mobile node computes the authentication.

3.3. Registration Request

   A mobile node registers with its home agent using a Registration
   Request message so that its home agent can create or modify a
   mobility binding for that mobile node (e.g., with a new lifetime).
   The Request may be relayed to the home agent by the foreign agent
   through which the mobile node is registering, or it may be sent
   directly to the home agent in the case in which the mobile node is
   registering a co-located care-of address.

   IP fields:

      Source Address Typically the interface address from which the
               message is sent.




Perkins                     Standards Track                    [Page 26]

RFC 2002                  IP Mobility Support               October 1996


      Destination Address Typically that of the foreign agent or the
               home agent.

   See Sections 3.6.1.1 and 3.7.2.2 for details.

   UDP fields:

      Source Port        variable

      Destination Port   434

   The UDP header is followed by the Mobile IP fields shown below:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Type      |S|B|D|M|G|V|rsv|          Lifetime             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          Home Address                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           Home Agent                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        Care-of Address                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   +                         Identification                        +
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Extensions ...
   +-+-+-+-+-+-+-+-

      Type     1 (Registration Request)

      S        Simultaneous bindings.  If the 'S' bit is set, the mobile
               node is requesting that the home agent retain its prior
               mobility bindings, as described in Section 3.6.1.2.

      B        Broadcast datagrams.  If the 'B' bit is set, the mobile
               node requests that the home agent tunnel to it any
               broadcast datagrams that it receives on the home network,
               as described in Section 4.3.

      D        Decapsulation by mobile node.  If the 'D' bit is set, the
               mobile node will itself decapsulate datagrams which are
               sent to the care-of address.  That is, the mobile node is
               using a co-located care-of address.





Perkins                     Standards Track                    [Page 27]

RFC 2002                  IP Mobility Support               October 1996


      M        Minimal encapsulation.  If the 'M' bit is set, the
               mobile node requests that its home agent use minimal
               encapsulation [15] for datagrams tunneled to the mobile
               node.

      G        GRE encapsulation.  If the 'G' bit is set, the
               mobile node requests that its home agent use GRE
               encapsulation [8] for datagrams tunneled to the mobile
               node.

      V        The mobile node requests that its mobility agent use Van
               Jacobson header compression [10] over its link with the
               mobile node.

      rsv      Reserved bits; sent as zero

      Lifetime
               The number of seconds remaining before the registration
               is considered expired.  A value of zero indicates a
               request for deregistration.  A value of 0xffff indicates
               infinity.

      Home Address
               The IP address of the mobile node.

      Home Agent
               The IP address of the mobile node's home agent.

      Care-of Address
               The IP address for the end of the tunnel.

      Identification
               A 64-bit number, constructed by the mobile node, used for
               matching Registration Requests with Registration Replies,
               and for protecting against replay attacks of registration
               messages.  See Sections 5.4 and 5.6.

      Extensions
               The fixed portion of the Registration Request is followed
               by one or more of the Extensions listed in Section 3.5.
               The Mobile-Home Authentication Extension MUST be included
               in all Registration Requests.  See Sections 3.6.1.3
               and  3.7.2.2 for information on the relative order in
               which different extensions, when present, MUST be placed
               in a Registration Request message.






Perkins                     Standards Track                    [Page 28]

RFC 2002                  IP Mobility Support               October 1996


3.4. Registration Reply

   A mobility agent returns a Registration Reply message to a mobile
   node which has sent a Registration Request (Section 3.3) message.  If
   the mobile node is requesting service from a foreign agent, that
   foreign agent will receive the Reply from the home agent and
   subsequently relay it to the mobile node.  The Reply message contains
   the necessary codes to inform the mobile node about the status of its
   Request, along with the lifetime granted by the home agent, which MAY
   be smaller than the original Request.

   The foreign agent MUST NOT increase the Lifetime selected by the
   mobile node in the Registration Request, since the Lifetime is
   covered by the Mobile-Home Authentication Extension, which cannot be
   correctly (re)computed by the foreign agent.  The home agent MUST NOT
   increase the Lifetime selected by the mobile node in the Registration
   Request, since doing so could increase it beyond the maximum
   Registration Lifetime allowed by the foreign agent.  If the Lifetime
   received in the Registration Reply is greater than that in the
   Registration Request, the Lifetime in the Request MUST be used.  When
   the Lifetime received in the Registration Reply is less than that in
   the Registration Request, the Lifetime in the Reply MUST be used.

   IP fields:

      Source Address        Typically copied from the destination
                            address of the Registration Request to which
                            the agent is replying.  See Sections 3.7.2.3
                            and 3.8.3.1 for complete details.

      Destination Address   Copied from the source address of the
                            Registration Request to which the agent is
                            replying

   UDP fields:

      Source Port           <variable>

      Destination Port      Copied from the source port of the
                            corresponding Registration Request
                            (Section 3.7.1).










Perkins                     Standards Track                    [Page 29]

RFC 2002                  IP Mobility Support               October 1996


   The UDP header is followed by the Mobile IP fields shown below:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Type      |     Code      |           Lifetime            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          Home Address                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           Home Agent                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   +                         Identification                        +
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Extensions ...
   +-+-+-+-+-+-+-+-

      Type     3 (Registration Reply)

      Code     A value indicating the result of the Registration
               Request.  See below for a list of currently defined Code
               values.

      Lifetime
               If the Code field indicates that the registration was
               accepted, the Lifetime field is set to the number of
               seconds remaining before the registration is considered
               expired.  A value of zero indicates that the mobile node
               has been deregistered.  A value of 0xffff indicates
               infinity.  If the Code field indicates that the
               registration was denied, the contents of the Lifetime
               field are unspecified and MUST be ignored on reception.

      Home Address
               The IP address of the mobile node.

      Home Agent
               The IP address of the mobile node's home agent.












Perkins                     Standards Track                    [Page 30]

RFC 2002                  IP Mobility Support               October 1996


      Identification
               A 64-bit number used for matching Registration Requests
               with Registration Replies, and for protecting against
               replay attacks of registration messages.  The value is
               based on the Identification field from the Registration
               Request message from the mobile node, and on the style of
               replay protection used in the security context between
               the mobile node and its home agent (defined by the
               mobility security association between them, and SPI
               value in the Mobile-Home Authentication Extension).  See
               Sections 5.4 and 5.6.

      Extensions
               The fixed portion of the Registration Reply is followed
               by one or more of the Extensions listed in Section 3.5.
               The Mobile-Home Authentication Extension MUST be included
               in all Registration Replies returned by the home agent.
               See Sections 3.7.2.2 and 3.8.3.3 for rules on placement
               of extensions to Reply messages.

   The following values are defined for use within the Code field.
   Registration successful:

        0 registration accepted
        1 registration accepted, but simultaneous mobility
          bindings unsupported

   Registration denied by the foreign agent:

       64 reason unspecified
       65 administratively prohibited
       66 insufficient resources
       67 mobile node failed authentication
       68 home agent failed authentication
       69 requested Lifetime too long
       70 poorly formed Request
       71 poorly formed Reply
       72 requested encapsulation unavailable
       73 requested Van Jacobson compression unavailable
       80 home network unreachable (ICMP error received)
       81 home agent host unreachable (ICMP error received)
       82 home agent port unreachable (ICMP error received)
       88 home agent unreachable (other ICMP error received)








Perkins                     Standards Track                    [Page 31]

RFC 2002                  IP Mobility Support               October 1996


   Registration denied by the home agent:

      128 reason unspecified
      129 administratively prohibited
      130 insufficient resources
      131 mobile node failed authentication
      132 foreign agent failed authentication
      133 registration Identification mismatch
      134 poorly formed Request
      135 too many simultaneous mobility bindings
      136 unknown home agent address

   Up-to-date values of the Code field are specified in the most recent
   "Assigned Numbers" [20].

3.5. Registration Extensions

3.5.1. Computing Authentication Extension Values

   The Authenticator value computed for each authentication Extension
   MUST protect the following fields from the registration message:

    -  the UDP payload (that is, the Registration Request or
       Registration Reply data),

    -  all prior Extensions in their entirety, and

    -  the Type and Length of this Extension.

   The default authentication algorithm uses keyed-MD5 [21] in
   "prefix+suffix" mode to compute a 128-bit "message digest" of the
   registration message.  The default authenticator is a 128-bit value
   computed as the MD5 checksum over the the following stream of bytes:

    -  the shared secret defined by the mobility security association
       between the nodes and by SPI value specified in the
       authentication Extension, followed by

    -  the protected fields from the registration message, in the order
       specified above, followed by

    -  the shared secret again.

   Note that the Authenticator field itself and the UDP header are NOT
   included in the computation of the default Authenticator value.  See
   Section 5.1 for information about support requirements for message
   authentication codes, which are to be used with the various
   authentication Extensions.



Perkins                     Standards Track                    [Page 32]

RFC 2002                  IP Mobility Support               October 1996


   The Security Parameter Index (SPI) within any of the authentication
   Extensions defines the security context which is used to compute the
   Authenticator value and which MUST be used by the receiver to check
   that value.  In particular, the SPI selects the authentication
   algorithm and mode (Section 5.1) and secret (a shared key, or
   appropriate public/private key pair) used in computing the
   Authenticator.  In order to ensure interoperability between different
   implementations of the Mobile IP protocol, an implementation MUST be
   able to associate any SPI value with any authentication algorithm and
   mode which it implements.  In addition, all implementations of Mobile
   IP MUST implement the default authentication algorithm (keyed-MD5)
   and mode ("prefix+suffix") defined above.

3.5.2. Mobile-Home Authentication Extension

   Exactly one Mobile-Home Authentication Extension MUST be present in
   all Registration Requests and Registration Replies, and is intended
   to eliminate problems [2] which result from the uncontrolled
   propagation of remote redirects in the Internet.  The location of the
   extension marks the end of the authenticated data.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Type      |     Length    |         SPI  ....
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
          ... SPI (cont.)          |       Authenticator ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Type            32

      Length          4 plus the number of bytes in the Authenticator.

      SPI             Security Parameter Index (4 bytes).  An opaque
                      identifier (see Section 1.6).

      Authenticator   (variable length) (See Section 3.5.1.)

3.5.3. Mobile-Foreign Authentication Extension

   This Extension MAY be included in Registration Requests and Replies
   in cases in which a mobility security association exists between the
   mobile node and the foreign agent.  See Section 5.1 for information
   about support requirements for message authentication codes.







Perkins                     Standards Track                    [Page 33]

RFC 2002                  IP Mobility Support               October 1996


    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Type      |     Length    |         SPI  ....
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
          ... SPI (cont.)          |       Authenticator ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Type            33

      Length          4 plus the number of bytes in the Authenticator.

      SPI             Security Parameter Index (4 bytes).  An opaque
                      identifier (see Section 1.6).

      Authenticator   (variable length) (See Section 3.5.1.)

3.5.4. Foreign-Home Authentication Extension

   This Extension MAY be included in Registration Requests and Replies
   in cases in which a mobility security association exists between the
   foreign agent and the home agent.  See Section 5.1 for information
   about support requirements for message authentication codes.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Type      |     Length    |         SPI  ....
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
          ... SPI (cont.)          |       Authenticator ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Type            34

      Length          4 plus the number of bytes in the Authenticator.

      SPI             Security Parameter Index (4 bytes).  An opaque
                      identifier (see Section 1.6).

      Authenticator   (variable length) (See Section 3.5.1.)

3.6. Mobile Node Considerations

   A mobile node MUST be configured with its home address, a netmask,
   and a mobility security association for each home agent.  In
   addition, a mobile node MAY be configured with the IP address of one
   or more of its home agents; otherwise, the mobile node MAY discover a
   home agent using the procedures described in Section 3.6.1.2.



Perkins                     Standards Track                    [Page 34]

RFC 2002                  IP Mobility Support               October 1996


   For each pending registration, the mobile node maintains the
   following information:

    - the link-layer address of the foreign agent to which the
      Registration Request was sent, if applicable,
    - the IP destination address of the Registration Request,
    - the care-of address used in the registration,
    - the Identification value sent in the registration,
    - the originally requested Lifetime, and
    - the remaining Lifetime of the pending registration.

   A mobile node SHOULD initiate a registration whenever it detects a
   change in its network connectivity.  See Section 2.4.2 for methods by
   which mobile nodes MAY make such a determination.  When it is away
   from home, the mobile node's Registration Request allows its home
   agent to create or modify a mobility binding for it.  When it is at
   home, the mobile node's (de)Registration Request allows its home
   agent to delete any previous mobility binding(s) for it.  A mobile
   node operates without the support of mobility functions when it is at
   home.

   There are other conditions under which the mobile node SHOULD
   (re)register with its foreign agent, such as when the mobile node
   detects that the foreign agent has rebooted (as specified in Section
   2.4.4) and when the current registration's Lifetime is near
   expiration.

   In the absence of link-layer indications of changes in point of
   attachment, Agent Advertisements from new agents SHOULD NOT cause a
   mobile node to attempt a new registration, if its current
   registration has not expired and it is still also receiving Agent
   Advertisements from the foreign agent with which it is currently
   registered.  In the absence of link-layer indications, a mobile node
   MUST NOT attempt to register more often than once per second.

   A mobile node MAY register with a different agent when transport-
   layer protocols indicate excessive retransmissions.  A mobile node
   MUST NOT consider reception of an ICMP Redirect from a foreign agent
   that is currently providing service to it as reason to register with
   a new foreign agent.  Within these constraints, the mobile node MAY
   register again at any time.

   Appendix D shows some examples of how the fields in registration
   messages would be set up in some typical registration scenarios.







Perkins                     Standards Track                    [Page 35]

RFC 2002                  IP Mobility Support               October 1996


3.6.1. Sending Registration Requests

   The following sections specify details for the values the mobile node
   MUST supply in the fields of Registration Request messages.

3.6.1.1. IP Fields

   This section provides the specific rules by which mobile nodes pick
   values for the IP header fields of a Registration Request.

   IP Source Address:

    -  When registering on a foreign network with a co-located care-of
       address, the IP source address MUST be the care-of address.

    -  In all other circumstances, the IP source address MUST be the
       mobile node's home address.

   IP Destination Address:

    -  When the mobile node has discovered the agent with which it is
       registering, through some means (e.g., link-layer) that does not
       provide the IP address of the agent (the IP address of the agent
       is unknown to the mobile node), then the "All Mobility Agents"
       multicast address (224.0.0.11) MUST be used.  In this case, the
       mobile node MUST use the agent's link-layer unicast address in
       order to deliver the datagram to the correct agent.

    -  When registering with a foreign agent, the address of the agent
       as learned from the IP source address of the corresponding Agent
       Advertisement MUST be used.  In addition, when transmitting
       this Registration Request message, the mobile node MUST use a
       link-layer destination address copied from the link-layer source
       address of the Agent Advertisement message in which it learned
       this foreign agent's IP address.

    -  When the mobile node is registering directly with its home
       agent and knows the (unicast) IP address of its home agent, the
       destination address MUST be set to this address.












Perkins                     Standards Track                    [Page 36]

RFC 2002                  IP Mobility Support               October 1996


    -  If the mobile node is registering directly with its home
       agent, but does not know the IP address of its home agent,
       the mobile node may use dynamic home agent address resolution
       to automatically determine the IP address of its home agent
       (Section 3.6.1.2).  In this case, the IP destination address is
       set to the subnet-directed broadcast address of the mobile node's
       home network.  This address MUST NOT be used as the destination
       IP address if the mobile node is registering via a foreign agent,
       although it MAY be used as the Home Agent address in the body of
       the Registration Request when registering via a foreign agent.

   IP Time to Live:

    -  The IP TTL field MUST be set to 1 if the IP destination address
       is set to the "All Mobility Agents" multicast address as
       described above.  Otherwise a suitable value should be chosen in
       accordance with standard IP practice [19].

3.6.1.2. Registration Request Fields

   This section provides specific rules by which mobile nodes pick
   values for the fields within the fixed portion of a Registration
   Request.

   A mobile node MAY set the 'S' bit in order to request that the home
   agent maintain prior mobility binding(s).  Otherwise, the home agent
   deletes any previous binding(s) and replaces them with the new
   binding specified in the Registration Request.  Multiple simultaneous
   mobility bindings are likely to be useful when a mobile node using at
   least one wireless network interface moves within wireless
   transmission range of more than one foreign agent.  IP explicitly
   allows duplication of datagrams.  When the home agent allows
   simultaneous bindings, it will tunnel a separate copy of each
   arriving datagram to each care-of address, and the mobile node will
   receive multiple copies of datagrams destined to it.

   The mobile node SHOULD set the 'D' bit if it is registering with a
   co-located care-of address.  Otherwise, the 'D' bit MUST NOT be set.

   A mobile node MAY set the 'B' bit to request its home agent to
   forward to it, a copy of broadcast datagrams received by its home
   agent from the home network.  The method used by the home agent to
   forward broadcast datagrams depends on the type of care-of address
   registered by the mobile node, as determined by the 'D' bit in the
   mobile node's Registration Request:






Perkins                     Standards Track                    [Page 37]

RFC 2002                  IP Mobility Support               October 1996


    -  If the 'D' bit is set, then the mobile node has indicated that it
       will decapsulate any datagrams tunneled to this care-of address
       itself (the mobile node is using a co-located care-of address).
       In this case, to forward such a received broadcast datagram to
       the mobile node, the home agent MUST tunnel it to this care-of
       address.  The mobile node de-tunnels the received datagram in the
       same way as any other datagram tunneled directly to it.

    -  If the 'D' bit is NOT set, then the mobile node has indicated
       that it is using a foreign agent care-of address, and that the
       foreign agent will thus decapsulate arriving datagrams before
       forwarding them to the mobile node.  In this case, to forward
       such a received broadcast datagram to the mobile node, the home
       agent MUST first encapsulate the broadcast datagram in a unicast
       datagram addressed to the mobile node's home address, and then
       MUST tunnel this resulting datagram to the mobile node's care-of
       address.

      When decapsulated by the foreign agent, the inner datagram will
      thus be a unicast IP datagram addressed to the mobile node,
      identifying to the foreign agent the intended destination of the
      encapsulated broadcast datagram, and will be delivered to the
      mobile node in the same way as any tunneled datagram arriving for
      the mobile node.  The foreign agent MUST NOT decapsulate the
      encapsulated broadcast datagram and MUST NOT use a local network
      broadcast to transmit it to the mobile node.  The mobile node thus
      MUST decapsulate the encapsulated broadcast datagram itself, and
      thus MUST NOT set the 'B' bit in its Registration Request in this
      case unless it is capable of decapsulating datagrams.

   The mobile node MAY request alternative forms of encapsulation by
   setting the 'M' bit and/or the 'G' bit, but only if the mobile node
   is decapsulating its own datagrams (the mobile node is using a co-
   located care-of address) or if its foreign agent has indicated
   support for these forms of encapsulation by setting the corresponding
   bits in the Mobility Agent Advertisement Extension of an Agent
   Advertisement received by the mobile node.  Otherwise, the mobile
   node MUST NOT set these bits.

   The Lifetime field is chosen as follows:

    -  If the mobile node is registering with a foreign agent, the
       Lifetime SHOULD NOT exceed the value in the Registration Lifetime
       field of the Agent Advertisement message received from the
       foreign agent.  When the method by which the care-of address is
       learned does not include a Lifetime, the default ICMP Router
       Advertisement Lifetime (1800 seconds) MAY be used.




Perkins                     Standards Track                    [Page 38]

RFC 2002                  IP Mobility Support               October 1996


    -  The mobile node MAY ask a home agent to delete a particular
       mobility binding, by sending a Registration Request with the
       care-of address for this binding, with the Lifetime field set to
       zero (Section 3.8.2).

    -  Similarly, a Lifetime of zero is used when the mobile node
       deregisters all care-of addresses, such as upon returning home.

   The Home Agent field MUST be set to the address of the mobile node's
   home agent, if the mobile node knows this address.  Otherwise, the
   mobile node MAY use dynamic home agent address resolution to learn
   the address of its home agent.  In this case, the mobile node MUST
   set the Home Agent field to the subnet-directed broadcast address of
   the mobile node's home network.  Each home agent receiving such a
   Registration Request with a broadcast destination address MUST reject
   the mobile node's registration and SHOULD return a rejection
   Registration Reply indicating its unicast IP address for use by the
   mobile node in a future registration attempt.

   The Care-of Address field MUST be set to the value of the particular
   care-of address that the mobile node wishes to (de)register.  In the
   special case in which a mobile node wishes to deregister all care-of
   addresses, it MUST set this field to its home address.

   The mobile node chooses the Identification field in accordance with
   the style of replay protection it uses with its home agent.  This is
   part of the mobility security association the mobile node shares with
   its home agent.  See Section 5.6 for the method by which the mobile
   node computes the Identification field.

3.6.1.3. Extensions

   This section describes the ordering of any mandatory and any optional
   Extensions that a mobile node appends to a Registration Request.
   This following ordering MUST be followed:

      a)   The IP header, followed by the UDP header, followed by the
           fixed-length portion of the Registration Request, followed by

      b)   If present, any non-authentication Extensions expected to be
           used by the home agent (which may or may not also be used by
           the foreign agent), followed by

      c)   The Mobile-Home Authentication Extension, followed by

      d)   If present, any non-authentication Extensions used only by
           the foreign agent, followed by




Perkins                     Standards Track                    [Page 39]

RFC 2002                  IP Mobility Support               October 1996


      e)   The Mobile-Foreign Authentication Extension, if present.

   Note that items (a) and (c) MUST appear in every Registration Request
   sent by the mobile node.  Items (b), (d), and (e) are optional.
   However, item (e) MUST be included when the mobile node and the
   foreign agent share a mobility security association.

3.6.2. Receiving Registration Replies

   Registration Replies will be received by the mobile node in response
   to its Registration Requests.  Registration Replies generally fall
   into three categories:

    - the registration was accepted,
    - the registration was denied by the foreign agent, or
    - the registration was denied by the home agent.

   The remainder of this section describes the Registration Reply
   handling by a mobile node in each of these three categories.

3.6.2.1. Validity Checks

   Registration Replies with an invalid, non-zero UDP checksum MUST be
   silently discarded.

   In addition, the low-order 32 bits of the Identification field in the
   Registration Reply MUST be compared to the low-order 32 bits of the
   Identification field in the most recent Registration Request sent to
   the replying agent.  If they do not match, the Reply MUST be silently
   discarded.

   Also, the authentication in the Registration Reply MUST be checked.
   That is, the mobile node MUST check for the presence of a valid
   authentication Extension, acting in accordance with the Code field in
   the Reply.  The rules are as follows:

      a)   If the mobile node and the foreign agent share a
           mobility security association, exactly one Mobile-Foreign
           Authentication Extension MUST be present in the Registration
           Reply, and the mobile node MUST check the Authenticator
           value in the Extension.  If no Mobile-Foreign Authentication
           Extension is found, or if more than one Mobile-Foreign
           Authentication Extension is found, or if the Authenticator is
           invalid, the mobile node MUST silently discard the Reply and
           SHOULD log the event as a security exception.






Perkins                     Standards Track                    [Page 40]

RFC 2002                  IP Mobility Support               October 1996


      b)   If the Code field indicates that service is denied by
           the home agent, or if the Code field indicates that the
           registration was accepted by the home agent, exactly one
           Mobile-Home Authentication Extension MUST be present in
           the Registration Reply, and the mobile node MUST check the
           Authenticator value in the Extension.  If no Mobile-Home
           Authentication Extension is found, or if more than one
           Mobile-Home Authentication Extension is found, or if the
           Authenticator is invalid, the mobile node MUST silently
           discard the Reply and SHOULD log the event as a security
           exception.

   If the Code field indicates an authentication failure, either at the
   foreign agent or the home agent, then it is quite possible that any
   authenticators in the Registration Reply will also be in error.  This
   could happen, for example, if the shared secret between the mobile
   node and home agent was erroneously configured.  The mobile node
   SHOULD log such errors as security exceptions.

3.6.2.2. Registration Request Accepted

   If the Code field indicates that the request has been accepted, the
   mobile node SHOULD configure its routing table appropriately for its
   current point of attachment (Section 4.2.1).

   If the mobile node is returning to its home network and that network
   is one which implements ARP, the mobile node MUST follow the
   procedures described in Section 4.6 with regard to ARP, proxy ARP,
   and gratuitous ARP.

   If the mobile node has registered on a foreign network, it SHOULD
   re-register before the expiration of the Lifetime of its
   registration.  As described in Section 3.6, for each pending
   Registration Request, the mobile node MUST maintain the remaining
   lifetime of this pending registration, as well as the original
   Lifetime from the Registration Request.  When the mobile node
   receives a valid Registration Reply, the mobile node MUST decrease
   its view of the remaining lifetime of the registration by the amount
   by which the home agent decreased the originally requested Lifetime.
   This procedure is equivalent to the mobile node starting a timer for
   the granted Lifetime at the time it sent the Registration Request,
   even though the granted Lifetime is not known to the mobile node
   until the Registration Reply is received.  Since the Registration
   Request is certainly sent before the home agent begins timing the
   registration Lifetime (also based on the granted Lifetime), this
   procedure ensures that the mobile node will re-register before the
   home agent expires and deletes the registration, in spite of possibly
   non-negligible transmission delays for the original Registration



Perkins                     Standards Track                    [Page 41]

RFC 2002                  IP Mobility Support               October 1996


   Request and Reply that started the timing of the Lifetime at the
   mobile node and its home agent.

3.6.2.3. Registration Request Denied

   If the Code field indicates that service is being denied, the mobile
   node SHOULD log the error.  In certain cases the mobile node may be
   able to "repair" the error.  These include:

      Code 69:  (Denied by foreign agent, Lifetime too long)

         In this case, the Lifetime field in the Registration Reply will
         contain the maximum Lifetime value which that foreign agent is
         willing to accept in any Registration Request.  The mobile node
         MAY attempt to register with this same agent, using a Lifetime
         in the Registration Request that MUST be less than or equal to
         the value specified in the Reply.

      Code 133:  (Denied by home agent, Identification mismatch)

         In this case, the Identification field in the Registration
         Reply will contain a value that allows the mobile node to
         synchronize with the home agent, based upon the style of replay
         protection in effect (Section 5.6).  The mobile node MUST
         adjust the parameters it uses to compute the Identification
         field based upon the information in the Registration Reply,
         before issuing any future Registration Requests.

      Code 136:  (Denied by home agent, Unknown home agent address)

         This code is returned by a home agent when the mobile node is
         performing dynamic home agent address resolution as described
         in Sections 3.6.1.1 and 3.6.1.2.  In this case, the Home Agent
         field within the Reply will contain the unicast IP address of
         the home agent returning the Reply.  The mobile node MAY then
         attempt to register with this home agent in future Registration
         Requests.  In addition, the mobile node SHOULD adjust the
         parameters it uses to compute the Identification field based
         upon the corresponding field in the Registration Reply, before
         issuing any future Registration Requests.

3.6.3. Registration Retransmission

   When no Registration Reply has been received within a reasonable
   time, another Registration Request MAY be transmitted.  When
   timestamps are used, a new registration Identification is chosen for
   each retransmission; thus it counts as a new registration.  When
   nonces are used, the unanswered Request is retransmitted unchanged;



Perkins                     Standards Track                    [Page 42]

RFC 2002                  IP Mobility Support               October 1996


   thus the retransmission does not count as a new registration (Section
   5.6).  In this way a retransmission will not require the home agent
   to resynchronize with the mobile node by issuing another nonce in the
   case in which the original Registration Request (rather than its
   Registration Reply) was lost by the network.

   The maximum time until a new Registration Request is sent SHOULD be
   no greater than the requested Lifetime of the Registration Request.
   The minimum value SHOULD be large enough to account for the size of
   the messages, twice the round trip time for transmission to the home
   agent, and at least an additional 100 milliseconds to allow for
   processing the messages before responding.  The round trip time for
   transmission to the home agent will be at least as large as the time
   required to transmit the messages at the link speed of the mobile
   node's current point of attachment.  Some circuits add another 200
   milliseconds of satellite delay in the total round trip time to the
   home agent.  The minimum time between Registration Requests MUST NOT
   be less than 1 second.  Each successive retransmission timeout period
   SHOULD be at least twice the previous period, as long as that is less
   than the maximum as specified above.

3.7. Foreign Agent Considerations

   The foreign agent plays a mostly passive role in Mobile IP
   registration.  It relays Registration Requests between mobile nodes
   and home agents, and, when it provides the care-of address,
   decapsulates datagrams for delivery to the mobile node.  It SHOULD
   also send periodic Agent Advertisement messages to advertise its
   presence as described in Section 2.3, if not detectable by link-layer
   means.

   A foreign agent MUST NOT transmit a Registration Request except when
   relaying a Registration Request received from a mobile node, to the
   mobile node's home agent.  A foreign agent MUST NOT transmit a
   Registration Reply except when relaying a Registration Reply received
   from a mobile node's home agent, or when replying to a Registration
   Request received from a mobile node in the case in which the foreign
   agent is denying service to the mobile node.  In particular, a
   foreign agent MUST NOT generate a Registration Request or Reply
   because a mobile node's registration Lifetime has expired.  A foreign
   agent also MUST NOT originate a Registration Request message that
   asks for deregistration of a mobile node; however, it MUST relay
   valid (de)Registration Requests originated by a mobile node.








Perkins                     Standards Track                    [Page 43]

RFC 2002                  IP Mobility Support               October 1996


3.7.1. Configuration and Registration Tables

   Each foreign agent MUST be configured with a care-of address.  In
   addition, for each pending or current registration, the foreign agent
   MUST maintain a visitor list entry containing the following
   information obtained from the mobile node's Registration Request:

    - the link-layer source address of the mobile node
    - the IP Source Address (the mobile node's Home Address)
    - the IP Destination Address (as specified in 3.6.2.3)
    - the UDP Source Port
    - the Home Agent address
    - the Identification field
    - the requested registration Lifetime, and
    - the remaining Lifetime of the pending or current registration.

   As with any node on the Internet, a foreign agent MAY also share
   mobility security associations with any other nodes.  When relaying a
   Registration Request from a mobile node to its home agent, if the
   foreign agent shares a mobility security association with the home
   agent, it MUST add a Foreign-Home Authentication Extension to the
   Request and MUST check the required Foreign-Home Authentication
   Extension in the Registration Reply from the home agent (Sections 3.3
   and 3.4).  Similarly, when receiving a Registration Request from a
   mobile node, if the foreign agent shares a mobility security
   association with the mobile node, it MUST check the required Mobile-
   Foreign Authentication Extension in the Request and MUST add a
   Mobile-Foreign Authentication Extension to the Registration Reply to
   the mobile node.

3.7.2. Receiving Registration Requests

   If the foreign agent accepts a Registration Request from a mobile
   node, it then MUST relay the Request to the indicated home agent.
   Otherwise, if the foreign agent denies the Request, it MUST send a
   Registration Reply to the mobile node with an appropriate denial
   Code, except in cases where the foreign agent would be required to
   send out more than one such denial per second to the same mobile
   node.  The following sections describe this behavior in more detail.

   If a foreign agent receives a Registration Request from a mobile node
   in its visitor list, the existing visitor list entry for the mobile
   node SHOULD NOT be deleted or modified until the foreign agent
   receives a valid Registration Reply from the home agent with a Code
   indicating success.  The foreign agent MUST record the new pending






Perkins                     Standards Track                    [Page 44]

RFC 2002                  IP Mobility Support               October 1996


   Request separately from the existing visitor list entry for the
   mobile node.  If the Registration Request requests deregistration,
   the existing visitor list entry for the mobile node SHOULD NOT be
   deleted until the foreign agent has received a successful
   Registration Reply.  If the Registration Reply indicates that the
   Request (for registration or deregistration) was denied by the home
   agent, the existing visitor list entry for the mobile node MUST NOT
   be modified as a result of receiving the Registration Reply.

3.7.2.1. Validity Checks

   Registration Requests with an invalid, non-zero UDP checksum MUST be
   silently discarded.

   Also, the authentication in the Registration Request MUST be checked.
   If the foreign agent and the mobile node share a mobility security
   association, exactly one Mobile-Foreign Authentication Extension MUST
   be present in the Registration Request, and the foreign agent MUST
   check the Authenticator value in the Extension.  If no Mobile-Foreign
   Authentication Extension is found, or if more than one Mobile-Foreign
   Authentication Extension is found, or if the Authenticator is
   invalid, the foreign agent MUST silently discard the Request and
   SHOULD log the event as a security exception.  The foreign agent also
   SHOULD send a Registration Reply to the mobile node with Code 67.

3.7.2.2. Forwarding a Valid Request to the Home Agent

   If the foreign agent accepts the mobile node's Registration Request,
   it MUST relay the Request to the mobile node's home agent as
   specified in the Home Agent field of the Registration Request.  The
   foreign agent MUST NOT modify any of the fields beginning with the
   fixed portion of the Registration Request up through and including
   the Mobile-Home Authentication Extension.  Otherwise, an
   authentication failure is very likely to occur at the home agent.  In
   addition, the foreign agent proceeds as follows:

    - It MUST process and remove any Extensions following the
      Mobile-Home Authentication Extension,
    - It MAY append any of its own non-authentication Extensions of
      relevance to the home agent, if applicable, and
    - It MUST append the Foreign-Home Authentication Extension, if the
      foreign agent shares a mobility security association with the home
      agent.








Perkins                     Standards Track                    [Page 45]

RFC 2002                  IP Mobility Support               October 1996


   Specific fields within the IP header and the UDP header of the
   relayed Registration Request MUST be set as follows:

      IP Source Address
               The foreign agent's address on the interface from which
               the message will be sent.

      IP Destination Address
               Copied from the Home Agent field within the Registration
               Request.

      UDP Source Port
               <variable>

      UDP Destination Port
               434

   After forwarding a valid Registration Request to the home agent, the
   foreign agent MUST begin timing the remaining lifetime of the pending
   registration based on the Lifetime in the Registration Request.  If
   this lifetime expires before receiving a valid Registration Reply,
   the foreign agent MUST delete its visitor list entry for this pending
   registration.

3.7.2.3. Denying Invalid Requests

   If the foreign agent denies the mobile node's Registration Request
   for any reason, it SHOULD send the mobile node a Registration Reply
   with a suitable denial Code.  In such a case, the Home Address, Home
   Agent, and Identification fields within the Registration Reply are
   copied from the corresponding fields of the Registration Request.

   If the Reserved field is nonzero, the foreign agent MUST deny the
   Request and SHOULD return a Registration Reply with status code 70 to
   the mobile node.  If the Request is being denied because the
   requested Lifetime is too long, the foreign agent sets the Lifetime
   in the Reply to the maximum Lifetime value it is willing to accept in
   any Registration Request, and sets the Code field to 69.  Otherwise,
   the Lifetime SHOULD be copied from the Lifetime field in the Request.

   Specific fields within the IP header and the UDP header of the
   Registration Reply MUST be set as follows:

      IP Source Address
               Copied from the IP Destination Address of Registration
               Request, unless the "All Agents Multicast" address was
               used.  In this case, the foreign agent's address (on the
               interface from which the message will be sent) MUST be



Perkins                     Standards Track                    [Page 46]

RFC 2002                  IP Mobility Support               October 1996


               used.

      IP Destination Address
               Copied from the IP Source Address of the Registration
               Request.

      UDP Source Port
               434

      UDP Destination Port
               Copied from the UDP Source Port of the Registration
               Request.

3.7.3. Receiving Registration Replies

   The foreign agent updates its visitor list when it receives a valid
   Registration Reply from a home agent.  It then relays the
   Registration Reply to the mobile node.  The following sections
   describe this behavior in more detail.

   If upon relaying a Registration Request to a home agent, the foreign
   agent receives an ICMP error message instead of a Registration Reply,
   then the foreign agent SHOULD send to the mobile node a Registration
   Reply with an appropriate "Home Agent Unreachable" failure Code
   (within the range 80-95, inclusive).  See Section 3.7.2.3 for details
   on building the Registration Reply.

3.7.3.1. Validity Checks

   Registration Replies with an invalid, non-zero UDP checksum MUST be
   silently discarded.

   When a foreign agent receives a Registration Reply message, it MUST
   search its visitor list for a pending Registration Request with the
   same mobile node home address as indicated in the Reply.  If no
   pending Request is found, the foreign agent MUST silently discard the
   Reply.  The foreign agent MUST also silently discard the Reply if the
   low-order 32 bits of the Identification field in the Reply do not
   match those in the Request.

   Also, the authentication in the Registration Reply MUST be checked.
   If the foreign agent and the home agent share a mobility security
   association, exactly one Foreign-Home Authentication Extension MUST
   be present in the Registration Reply, and the foreign agent MUST
   check the Authenticator value in the Extension.  If no Foreign-Home
   Authentication Extension is found, or if more than one Foreign-Home
   Authentication Extension is found, or if the Authenticator is
   invalid, the foreign agent MUST silently discard the Reply and SHOULD



Perkins                     Standards Track                    [Page 47]

RFC 2002                  IP Mobility Support               October 1996


   log the event as a security exception.  The foreign agent also MUST
   reject the mobile node's registration and SHOULD send a Registration
   Reply to the mobile node with Code 68.

3.7.3.2. Forwarding Replies to the Mobile Node

   A Registration Reply which satisfies the validity checks of Section
   3.8.2.1 is relayed to the mobile node.  The foreign agent MUST also
   update its visitor list entry for the mobile node to reflect the
   results of the Registration Request, as indicated by the Code field
   in the Reply.  If the Code indicates that the mobile node has
   accepted the registration and the Lifetime field is nonzero, the
   foreign agent MUST set the Lifetime in the visitor list entry to the
   value specified in the Lifetime field of the Registration Reply.  If,
   instead, the Code indicates that the Lifetime field is zero, the
   foreign agent MUST delete its visitor list entry for the mobile node.
   Finally, if the Code indicates that the registration was denied by
   the home agent, the foreign agent MUST delete its pending
   registration list entry, but not its visitor list entry, for the
   mobile node.

   The foreign agent MUST NOT modify any of the fields beginning with
   the fixed portion of the Registration Reply up through and including
   the Mobile-Home Authentication Extension.  Otherwise, an
   authentication failure is very likely to occur at the mobile node.
   In addition, the foreign agent SHOULD perform the following
   additional procedures:

    - It MUST process and remove any Extensions following the
      Mobile-Home Authentication Extension,
    - It MAY append its own non-authentication Extensions of relevance
      to the mobile node, if applicable, and
    - It MUST append the Mobile-Foreign Authentication Extension, if
      the foreign agent shares a mobility security association with the
      mobile node.

   Specific fields within the IP header and the UDP header of the
   relayed Registration Reply are set according to the same rules
   specified in Section 3.7.2.3.

   After forwarding a valid Registration Reply to the mobile node, the
   foreign agent MUST update its visitor list entry for this
   registration as follows.  If the Registration Reply indicates that
   the registration was accepted by the home agent, the foreign agent
   resets its timer of the lifetime of the registration to the Lifetime
   granted in the Registration Reply; unlike the mobile node's timing of
   the registration lifetime as described in Section 3.6.2.2, the
   foreign agent considers this lifetime to begin when it forwards the



Perkins                     Standards Track                    [Page 48]

RFC 2002                  IP Mobility Support               October 1996


   Registration Reply message, ensuring that the foreign agent will not
   expire the registration before the mobile node does.  On the other
   hand, if the Registration Reply indicates that the registration was
   rejected by the home agent, the foreign agent deletes its visitor
   list entry for this attempted registration.

3.8. Home Agent Considerations

   Home agents play a reactive role in the registration process.  The
   home agent receives Registration Requests from the mobile node
   (perhaps relayed by a foreign agent), updates its record of the
   mobility bindings for this mobile node, and issues a suitable
   Registration Reply in response to each.

   A home agent MUST NOT transmit a Registration Reply except when
   replying to a Registration Request received from a mobile node.  In
   particular, the home agent MUST NOT generate a Registration Reply to
   indicate that the Lifetime has expired.

3.8.1. Configuration and Registration Tables

   Each home agent MUST be configured with an IP address and with the
   prefix size for the home network.  The home agent MUST be configured
   with the home address and mobility security association of each
   authorized mobile node that it is serving as a home agent.  When the
   home agent accepts a valid Registration Request from a mobile node
   that it serves as a home agent, the home agent MUST create or modify
   the entry for this mobile node in its mobility binding list
   containing:

    - the mobile node's care-of address
    - the Identification field from the Registration Reply
    - the remaining Lifetime of the registration

   The home agent MAY also maintain mobility security associations with
   various foreign agents.  When receiving a Registration Request from a
   foreign agent, if the home agent shares a mobility security
   association with the foreign agent, the home agent MUST check the
   Authenticator in the required Foreign-Home Authentication Extension
   in the message, based on this mobility security association.
   Similarly, when sending a Registration Reply to a foreign agent, if
   the home agent shares a mobility security association with the
   foreign agent, the home agent MUST include a Foreign-Home
   Authentication Extension in the message, based on this mobility
   security association.

3.8.2. Receiving Registration Requests




Perkins                     Standards Track                    [Page 49]

RFC 2002                  IP Mobility Support               October 1996


   If the home agent accepts an incoming Registration Request, it MUST
   update its record of the the mobile node's mobility binding(s) and
   SHOULD send a Registration Reply with a suitable Code.  Otherwise
   (the home agent denies the Request), it SHOULD send a Registration
   Reply with an appropriate Code specifying the reason the Request was
   denied.  The following sections describe this behavior in more
   detail.

3.8.2.1. Validity Checks

   Registration Requests with an invalid, non-zero UDP checksum MUST be
   silently discarded by the home agent.

   The authentication in the Registration Request MUST be checked.  This
   involves the following operations:

      a)   The home agent MUST check for the presence of a valid
           Mobile-Home Authentication Extension, and perform the
           indicated authentication.  Exactly one Mobile-Home
           Authentication Extension MUST be present in the Registration
           Request, and the home agent MUST check the Authenticator
           value in the Extension.  If no Mobile-Home Authentication
           Extension is found, or if more than one Mobile-Home
           Authentication Extension is found, or if the Authenticator
           is invalid, the home agent MUST reject the mobile node's
           registration and SHOULD send a Registration Reply to the
           mobile node with Code 131.  The home agent MUST then discard
           the Request and SHOULD log the error as a security exception.

      b)   The home agent MUST check that the registration
           Identification field is correct using the context selected by
           the SPI within the Mobile-Home Authentication Extension.  See
           Section 5.6 for a description of how this is performed.  If
           incorrect, the home agent MUST reject the Request and SHOULD
           send a Registration Reply to the mobile node with Code 133,
           including an Identification field computed in accordance with
           the rules specified in Section 5.6.  The home agent MUST do
           no further processing with such a Request, though it SHOULD
           log the error as a security exception.

      c)   If the home agent shares a mobility security association with
           the foreign agent, the home agent MUST check for the presence
           of a valid Foreign-Home Authentication Extension.  Exactly
           one Foreign-Home Authentication Extension MUST be present in
           the Registration Request in this case, and the home agent
           MUST check the Authenticator value in the Extension.  If no
           Foreign-Home Authentication Extension is found, or if more
           than one Foreign-Home Authentication Extension is found, or



Perkins                     Standards Track                    [Page 50]

RFC 2002                  IP Mobility Support               October 1996


           if the Authenticator is invalid, the home agent MUST reject
           the mobile node's registration and SHOULD send a Registration
           Reply to the mobile node with Code 132.  The home agent
           MUST then discard the Request and SHOULD log the error as a
           security exception.

   In addition to checking the authentication in the Registration
   Request, home agents MUST deny Registration Requests that are sent to
   the subnet-directed broadcast address of the home network (as opposed
   to being unicast to the home agent).  The home agent MUST discard the
   Request and SHOULD returning a Registration Reply with a Code of 136.
   In this case, the Registration Reply will contain the home agent's
   unicast address, so that the mobile node can re-issue the
   Registration Request with the correct home agent address.

3.8.2.2. Accepting a Valid Request

   If the Registration Request satisfies the validity checks in Section
   3.8.2.1, and the home agent is able to accommodate the Request, the
   home agent MUST update its mobility binding list for the requesting
   mobile node and MUST return a Registration Reply to the mobile node.
   In this case, the Reply Code will be either 0 if the home agent
   supports simultaneous mobility bindings, or 1 if it does not.  See
   Section 3.8.3 for details on building the Registration Reply message.

   The home agent updates its record of the mobile node's mobility
   bindings as follows, based on the fields in the Registration Request:

    -  If the Lifetime is zero and the Care-of Address equals the mobile
       node's home address, the home agent deletes all of the entries in
       the mobility binding list for the requesting mobile node.  This
       is how a mobile node requests that its home agent cease providing
       mobility services.

    -  If the Lifetime is zero and the Care-of Address does not equal
       the mobile node's home address, the home agent deletes only the
       entry containing the specified Care-of Address from the mobility
       binding list for the requesting mobile node.  Any other active
       entries containing other care-of addresses will remain active.

    -  If the Lifetime is nonzero, the home agent adds an entry
       containing the requested Care-of Address to the mobility binding
       list for the mobile node.  If the 'S' bit is set and the home
       agent supports simultaneous mobility bindings, the previous
       mobility binding entries are retained.  Otherwise, the home agent
       removes all previous entries in the mobility binding list for the
       mobile node.




Perkins                     Standards Track                    [Page 51]

RFC 2002                  IP Mobility Support               October 1996


   In all cases, the home agent MUST send a Registration Reply to the
   source of the Registration Request, which might indeed be a different
   foreign agent than that whose care-of address is being
   (de)registered.  If the home agent shares a mobility security
   association with the foreign agent whose care-of address is being
   deregistered, and that foreign agent is different from the one which
   relayed the Registration Request, the home agent MAY additionally
   send a Registration Reply to the foreign agent whose care-of address
   is being deregistered.  The home agent MUST NOT send such a Reply if
   it does not share a mobility security association with the foreign
   agent.  If no Reply is sent, the foreign agent's visitor list will
   expire naturally when the original Lifetime expires.

   The home agent MUST NOT increase the Lifetime above that specified by
   the mobile node in the Registration Request.  However, it is not an
   error for the mobile node to request a Lifetime longer than the home
   agent is willing to accept.  In this case, the home agent simply
   reduces the Lifetime to a permissible value and returns this value in
   the Registration Reply.  The Lifetime value in the Registration Reply
   informs the mobile node of the granted lifetime of the registration,
   indicating when it SHOULD re-register in order to maintain continued
   service.  After the expiration of this registration lifetime, the
   home agent MUST delete its entry for this registration in its
   mobility binding list.

   If the Registration Request duplicates an accepted current
   Registration Request, the new Lifetime MUST NOT extend beyond the
   Lifetime originally granted.  A Registration Request is a duplicate
   if the home address, care-of address, and Identification fields all
   equal those of an accepted current registration.

   In addition, if the home network implements ARP [16], and the
   Registration Request asks the home agent to create a mobility binding
   for a mobile node which previously had no binding (the mobile node
   was previously assumed to be at home), then the home agent MUST
   follow the procedures described in Section 4.6 with regard to ARP,
   proxy ARP, and gratuitous ARP.  If the mobile node already had a
   previous mobility binding, the home agent MUST continue to follow the
   rules for proxy ARP described in Section 4.6.

3.8.2.3. Denying an Invalid Request

   If the Registration Reply does not satisfy all of the validity checks
   in Section 3.8.2.1, or the home agent is unable to accommodate the
   Request, the home agent SHOULD return a Registration Reply to the
   mobile node with a Code that indicates the reason for the error.  If
   a foreign agent was involved in relaying the Request, this allows the
   foreign agent to delete its pending visitor list entry.  Also, this



Perkins                     Standards Track                    [Page 52]

RFC 2002                  IP Mobility Support               October 1996


   informs the mobile node of the reason for the error such that it may
   attempt to fix the error and issue another Request.

   This section lists a number of reasons the home agent might reject a
   Request, and provides the Code value it should use in each instance.
   See Section 3.8.3 for additional details on building the Registration
   Reply message.

   Many reasons for rejecting a registration are administrative in
   nature.  For example, a home agent can limit the number of
   simultaneous registrations for a mobile node, by rejecting any
   registrations that would cause its limit to be exceeded, and
   returning a Registration Reply with error code 135.  Similarly, a
   home agent may refuse to grant service to mobile nodes which have
   entered unauthorized service areas by returning a Registration Reply
   with a Code of 129.

   If the Reserved field is nonzero, it MUST deny the Request with a
   Code of 134.

3.8.3. Sending Registration Replies

   If the home agent accepts a Registration Request, it then MUST update
   its record of the mobile node's mobility binding(s) and SHOULD send a
   Registration Reply with a suitable Code.  Otherwise (the home agent
   has denied the Request), it SHOULD send a Registration Reply with an
   appropriate Code specifying the reason the Request was denied.  The
   following sections provide additional detail for the values the home
   agent MUST supply in the fields of Registration Reply messages.

3.8.3.1. IP/UDP Fields

   This section provides the specific rules by which mobile nodes pick
   values for the IP and UDP header fields of a Registration Reply.

      IP Source Address
               Copied from the IP Destination Address of Registration
               Request, unless a multicast or broadcast address was
               used.  If the IP Destination Address of the Registration
               Request was a broadcast or multicast address, the IP
               Source Address of the Registration Reply MUST be set to
               the home agent's (unicast) IP address.

      IP Destination Address
               Copied from the IP Source Address of the Registration
               Request.





Perkins                     Standards Track                    [Page 53]

RFC 2002                  IP Mobility Support               October 1996


      UDP Source Port
               Copied from the UDP Destination Port of the Registration
               Request.

      UDP Destination Port
               Copied from the UDP Source Port of the Registration
               Request.

   When sending a Registration Reply in response to a Registration
   Request that requested deregistration of the mobile node (the
   Lifetime is zero and the Care-of Address equals the mobile node's
   home address) and in which the IP Source Address was also set to the
   mobile node's home address (this is the normal method used by a
   mobile node to deregister when it returns to its home network), the
   IP Destination Address in the Registration Reply will be set to the
   mobile node's home address, as copied from the IP Source Address of
   the Request.

   In this case, when transmitting the Registration Reply, the home
   agent MUST transmit the Reply directly onto the home network as if
   the mobile node were at home, bypassing any mobility binding list
   entry that may still exist at the home agent for the destination
   mobile node.  In particular, for a mobile node returning home after
   being registered with a care-of address, if the mobile node's new
   Registration Request is not accepted by the home agent, the mobility
   binding list entry for the mobile node will still indicate that
   datagrams addressed to the mobile node should be tunneled to the
   mobile node's registered care-of address; when sending the
   Registration Reply indicating the rejection of this Request, this
   existing binding list entry MUST be ignored, and the home agent MUST
   transmit this Reply as if the mobile node were at home.

3.8.3.2. Registration Reply Fields

   This section provides specific rules by which home agents pick values
   for the fields within the fixed portion of a Registration Reply.  The
   Code field of the Registration Reply is chosen in accordance with the
   rules specified in the previous sections.  When replying to an
   accepted registration, a home agent SHOULD respond with Code 1 if it
   does not support simultaneous registrations.

   The Lifetime field MUST be copied from the corresponding field in the
   Registration Request, unless the requested value is greater than the
   maximum length of time the home agent is willing to provide the
   requested service.  In such a case, the Lifetime MUST be set to the
   length of time that service will actually be provided by the home
   agent.  This reduced Lifetime SHOULD be the maximum Lifetime allowed
   by the home agent (for this mobile node and care-of address).



Perkins                     Standards Track                    [Page 54]

RFC 2002                  IP Mobility Support               October 1996


   The Home Address field MUST be copied from the corresponding field in
   the Registration Request.

   If the Home Agent field in the Registration Request contains a
   unicast address of this home agent, then that field MUST be copied
   into the Home Agent field of the Registration Reply.  Otherwise, the
   home agent MUST set the Home Agent field in the Registration Reply to
   its unicast address.  In this latter case, the home agent MUST reject
   the registration with a suitable code (e.g., Code 136) to prevent the
   mobile node from possibly being simultaneously registered with two or
   more home agents.

3.8.3.3. Extensions

   This section describes the ordering of any required and any optional
   Mobile IP Extensions that a home agent appends to a Registration
   Reply.  The following ordering MUST be followed:

      a)   The IP header, followed by the UDP header, followed by the
           fixed-length portion of the Registration Reply,

      b)   If present, any non-authentication Extensions used by the
           mobile node (which may or may not also be used by the foreign
           agent),

      c)   The Mobile-Home Authentication Extension,

      d)   If present, any non-authentication Extensions used only by
           the foreign agent, and

      e)   The Foreign-Home Authentication Extension, if present.

   Note that items (a) and (c) MUST appear in every Registration Reply
   sent by the home agent.  Items (b), (d), and (e) are optional.
   However, item (e) MUST be included when the home agent and the
   foreign agent share a mobility security association.

4. Routing Considerations

   This section describes how mobile nodes, home agents, and (possibly)
   foreign agents cooperate to route datagrams to/from mobile nodes that
   are connected to a foreign network.  The mobile node informs its home
   agent of its current location using the registration procedure
   described in Section 3.  See the protocol overview in Section 1.7 for
   the relative locations of the mobile node's home address with respect
   to its home agent, and the mobile node itself with respect to any
   foreign agent with which it might attempt to register.




Perkins                     Standards Track                    [Page 55]

RFC 2002                  IP Mobility Support               October 1996


4.1. Encapsulation Types

   Home agents and foreign agents MUST support tunneling datagrams using
   IP in IP encapsulation [14].  Any mobile node that uses a co-located
   care-of address MUST support receiving datagrams tunneled using IP in
   IP encapsulation.  Minimal encapsulation [15] and GRE encapsulation
   [8] are alternate encapsulation methods which MAY optionally be
   supported by mobility agents and mobile nodes.  The use of these
   alternative forms of encapsulation, when requested by the mobile
   node, is otherwise at the discretion of the home agent.

4.2. Unicast Datagram Routing

4.2.1. Mobile Node Considerations

   When connected to its home network, a mobile node operates without
   the support of mobility services.  That is, it operates in the same
   way as any other (fixed) host or router.  The method by which a
   mobile node selects a default router when connected to its home
   network, or when away from home and using a co-located care-of
   address, is outside the scope of this document.  ICMP Router
   Advertisement [4] is one such method.

   When registered on a foreign network, the mobile node chooses a
   default router by the following rules:

    -  If the mobile node is registered using a foreign agent care-of
       address, then the mobile node MUST choose its default router
       from among the Router Addresses advertised in the ICMP Router
       Advertisement portion of that Agent Advertisement message.  The
       mobile node MAY also consider the IP source address of the Agent
       Advertisement as another possible choice for the IP address of a
       default router, along with the (possibly empty) list of Router
       Addresses from the ICMP Router Advertisement portion of the
       message.  In such cases, the IP source address MUST be considered
       to be the worst choice (lowest preference) for a default router.

    -  If the mobile node is registered directly with its home agent
       using a co-located care-of address, then the mobile node SHOULD
       choose its default router from among those advertised in any
       ICMP Router Advertisement message that it receives for which
       its externally obtained care-of address and the Router Address
       match under the network prefix.  If the mobile node's externally
       obtained care-of address matches the IP source address of the
       Agent Advertisement under the network prefix, the mobile node
       MAY also consider that IP source address as another possible
       choice for the IP address of a default router, along with the
       (possibly empty) list of Router Addresses from the ICMP Router



Perkins                     Standards Track                    [Page 56]

RFC 2002                  IP Mobility Support               October 1996


       Advertisement portion of the message.  If so, the IP source
       address MUST be considered to be the worst choice (lowest
       preference) for a default router.  The network prefix MAY
       be obtained from the Prefix-Lengths Extension in the Router
       Advertisement, if present.  The prefix MAY also be obtained
       through other mechanisms beyond the scope of this document.

   Beyond these rules, the actual selection of the default router is
   made by the selection method specified for ICMP Router Discovery [4],
   among the Router Addresses specified above.  In any case, a mobile
   node registered via a foreign agent MAY choose its foreign agent as a
   default router.

   Note that Van Jacobson header compression [10] will not function
   properly unless all TCP IP datagrams to and from the mobile node
   pass, respectively, through the same first and last-hop router.  The
   mobile node, therefore, MUST select its foreign agent as its default
   router if it performs Van Jacobson header compression with its
   foreign agent.

4.2.2. Foreign Agent Considerations

   Upon receipt of an encapsulated datagram sent to its advertised
   care-of address, a foreign agent MUST compare the inner destination
   address to those entries in its visitor list.  When the destination
   does not match the address of any mobile node currently in the
   visitor list, the foreign agent MUST NOT forward the datagram without
   modifications to the original IP header, because otherwise a routing
   loop is likely to result.  The datagram SHOULD be silently discarded.
   ICMP Destination Unreachable MUST NOT be sent when a foreign agent is
   unable to forward an incoming tunneled datagram.  Otherwise, the
   foreign agent forwards the decapsulated datagram to the mobile node.

   The foreign agent MUST NOT advertise to other routers in its routing
   domain, nor to any other mobile node, the presence of a mobile router
   (Section 4.5).

   The foreign agent MUST route datagrams it receives from registered
   mobile nodes.  At a minimum, this means that the foreign agent must
   verify the IP Header Checksum, decrement the IP Time To Live,
   recompute the IP Header Checksum, and forward such datagrams to a
   default router.  In addition, the foreign agent SHOULD send an
   appropriate ICMP Redirect message to the mobile node.








Perkins                     Standards Track                    [Page 57]

RFC 2002                  IP Mobility Support               October 1996


4.2.3. Home Agent Considerations

   The home agent MUST be able to intercept any datagrams on the home
   network addressed to the mobile node while the mobile node is
   registered away from home.  Proxy and gratuitous ARP MAY be used in
   enabling this interception, as specified in Section 4.6.

   The home agent must examine the IP Destination Address of all
   arriving datagrams to see if it is equal to the home address of any
   of its mobile nodes registered away from home.  If so, the home agent
   tunnels the datagram to the mobile node's currently registered care-
   of address or addresses.  If the home agent supports the optional
   capability of multiple simultaneous mobility bindings, it tunnels a
   copy to each care-of address in the mobile node's mobility binding
   list.  If the mobile node has no current mobility bindings, the home
   agent MUST NOT attempt to intercept datagrams destined for the mobile
   node, and thus will not in general receive such datagrams.  However,
   if the home agent is also a router handling common IP traffic, it is
   possible that it will receive such datagrams for forwarding onto the
   home network.  In this case, the home agent MUST assume the mobile
   node is at home and simply forward the datagram directly onto the
   home network.

   See Section 4.1 regarding methods of encapsulation that may be used
   for tunneling.  Nodes implementing tunneling SHOULD also implement
   the "tunnel soft state" mechanism [14], which allows ICMP error
   messages returned from the tunnel to correctly be reflected back to
   the original senders of the tunneled datagrams.

   Home agents SHOULD be able to decapsulate and further deliver packets
   addressed to themselves, sent by a mobile node for the purpose of
   maintaining location privacy, as described in Section 5.5.

   If the Lifetime for a given mobility binding expires before the home
   agent has received another valid Registration Request for that mobile
   node, then that binding is deleted from the mobility binding list.
   The home agent MUST NOT send any Registration Reply message simply
   because the mobile node's binding has expired.  The entry in the
   visitor list of the mobile node's current foreign agent will expire
   naturally, probably at the same time as the binding expired at the
   home agent.  When a mobility binding's lifetime expires, the home
   agent MUST delete the binding, but it MUST retain any other (non-
   expired) simultaneous mobility bindings that it holds for the mobile
   node.

   When a home agent receives a datagram, intercepted for one of its
   mobile nodes registered away from home, the home agent MUST examine
   the datagram to check if it is already encapsulated.  If so, special



Perkins                     Standards Track                    [Page 58]

RFC 2002                  IP Mobility Support               October 1996


   rules apply in the forwarding of that datagram to the mobile node:

    -  If the inner (encapsulated) Destination Address is the same
       as the outer Destination Address (the mobile node), then the
       home agent MUST also examine the outer Source Address of the
       encapsulated datagram (the source address of the tunnel).  If
       this outer Source Address is the same as the mobile node's
       current care-of address, the home agent MUST silently discard
       that datagram in order to prevent a likely routing loop.  If,
       instead, the outer Source Address is NOT the same as the mobile
       node's current care-of address, then the home agent SHOULD
       forward the datagram to the mobile node.  In order to forward
       the datagram in this case, the home agent MAY simply alter the
       outer Destination Address to the care-of address, rather than
       re-encapsulating the datagram.

    -  Otherwise (the inner Destination Address is NOT the same as the
       outer Destination Address), the home agent SHOULD encapsulate
       the datagram again (recursive encapsulation), with the new outer
       Destination Address set equal to the mobile node's care-of
       address.  That is, the home agent forwards the entire datagram
       to the mobile node in the same way as any other datagram
       (encapsulated already or not).

4.3. Broadcast Datagrams

   When a home agent receives a broadcast datagram, it MUST NOT forward
   the datagram to any mobile nodes in its mobility binding list other
   than those that have requested forwarding of broadcast datagrams.  A
   mobile node MAY request forwarding of broadcast datagrams by setting
   the 'B' bit in its Registration Request message (Section 3.3).  For
   each such registered mobile node, the home agent SHOULD forward
   received broadcast datagrams to the mobile node, although it is a
   matter of configuration at the home agent as to which specific
   categories of broadcast datagrams will be forwarded to such mobile
   nodes.

   If the 'D' bit was set in the mobile node's Registration Request
   message, indicating that the mobile node is using a co-located care-
   of address, the home agent simply tunnels appropriate broadcast IP
   datagrams to the mobile node's care-of address.  Otherwise (the 'D'
   bit was NOT set), the home agent first encapsulates the broadcast
   datagram in a unicast datagram addressed to the mobile node's home
   address, and then tunnels this encapsulated datagram to the foreign
   agent.  This extra level of encapsulation is required so that the
   foreign agent can determine which mobile node should receive the
   datagram after it is decapsulated.  When received by the foreign
   agent, the unicast encapsulated datagram is detunneled and delivered



Perkins                     Standards Track                    [Page 59]

RFC 2002                  IP Mobility Support               October 1996


   to the mobile node in the same way as any other datagram.  In either
   case, the mobile node must decapsulate the datagram it receives in
   order to recover the original broadcast datagram.

4.4. Multicast Datagram Routing

   As mentioned previously, a mobile node that is connected to its home
   network functions in the same way as any other (fixed) host or
   router.  Thus, when it is at home, a mobile node functions
   identically to other multicast senders and receivers.  This section
   therefore describes the behavior of a mobile node that is visiting a
   foreign network.

   In order receive multicasts, a mobile node MUST join the multicast
   group in one of two ways.  First, a mobile node MAY join the group
   via a (local) multicast router on the visited subnet.  This option
   assumes that there is a multicast router present on the visited
   subnet.  If the mobile node is using a co-located care-of address, it
   SHOULD use this address as the source IP address of its IGMP [5]
   messages.  Otherwise, it MUST use its home address.

   Alternatively, a mobile node which wishes to receive multicasts MAY
   join groups via a bi-directional tunnel to its home agent, assuming
   that its home agent is a multicast router.  The mobile node tunnels
   IGMP messages to its home agent and the home agent forwards multicast
   datagrams down the tunnel to the mobile node.  The rules for
   multicast datagram delivery to mobile nodes in this case are
   identical to those for broadcast datagrams (Section 4.3).  Namely, if
   the mobile node is using a co-located care-of address (the 'D' bit
   was set in the mobile node's Registration Request), then the home
   agent SHOULD tunnel the datagram to this care-of address; otherwise,
   the home agent MUST first encapsulate the datagram in a unicast
   datagram addressed to the mobile node's home address and then MUST
   tunnel the resulting datagram (recursive tunneling) to the mobile
   node's care-of address.

   A mobile node that wishes to send datagrams to a multicast group also
   has two options:  (1) send directly on the visited network; or (2)
   send via a tunnel to its home agent.  Because multicast routing in
   general depends upon the IP source address, a mobile node which sends
   multicast datagrams directly on the visited network MUST use a co-
   located care-of address as the IP source address.  Similarly, a
   mobile node which tunnels a multicast datagram to its home agent MUST
   use its home address as the IP source address of both the (inner)
   multicast datagram and the (outer) encapsulating datagram.  This
   second option assumes that the home agent is a multicast router.





Perkins                     Standards Track                    [Page 60]

RFC 2002                  IP Mobility Support               October 1996


4.5. Mobile Routers

   A mobile node can be a router, which is responsible for the mobility
   of one or more entire networks moving together, perhaps on an
   airplane, a ship, a train, an automobile, a bicycle, or a kayak.  The
   nodes connected to a network served by the mobile router may
   themselves be fixed nodes or mobile nodes or routers.  In this
   document, such networks are called "mobile networks".

   A mobile router MAY act as a foreign agent and provide a foreign
   agent care-of address to mobile nodes connected to the mobile
   network.  Typical routing to a mobile node via a mobile router in
   this case is illustrated by the following example:

      a)   A laptop computer is disconnected from its home network and
           later attached to a network port in the seat back of an
           aircraft.  The laptop computer uses Mobile IP to register on
           this foreign network, using a foreign agent care-of address
           discovered through an Agent Advertisement from the aircraft's
           foreign agent.

      b)   The aircraft network is itself mobile.  Suppose the node
           serving as the foreign agent on the aircraft also serves as
           the default router that connects the aircraft network to the
           rest of the Internet.  When the aircraft is at home, this
           router is attached to some fixed network at the airline's
           headquarters, which is the router's home network.  While
           the aircraft is in flight, this router registers from time
           to time over its radio link with a series of foreign agents
           below it on the ground.  This router's home agent is a node
           on the fixed network at the airline's headquarters.

      c)   Some correspondent node sends a datagram to the laptop
           computer, addressing the datagram to the laptop's home
           address.  This datagram is initially routed to the laptop's
           home network.

      d)   The laptop's home agent intercepts the datagram on the home
           network and tunnels it to the laptop's care-of address, which
           in this example is an address of the node serving as router
           and foreign agent on the aircraft.  Normal IP routing will
           route the datagram to the fixed network at the airline's
           headquarters.








Perkins                     Standards Track                    [Page 61]

RFC 2002                  IP Mobility Support               October 1996


      e)   The aircraft router and foreign agent's home agent there
           intercepts the datagram and tunnels it to its current care-of
           address, which in this example is some foreign agent on the
           ground below the aircraft.  The original datagram from the
           correspondent node has now been encapsulated twice:  once
           by the laptop's home agent and again by the aircraft's home
           agent.

      f)   The foreign agent on the ground decapsulates the datagram,
           yielding a datagram still encapsulated by the laptop's home
           agent, with a destination address of the laptop's care-of
           address.  The ground foreign agent sends the resulting
           datagram over its radio link to the aircraft.

      g)   The foreign agent on the aircraft decapsulates the datagram,
           yielding the original datagram from the correspondent node,
           with a destination address of the laptop's home address.
           The aircraft foreign agent delivers the datagram over the
           aircraft network to the laptop's link-layer address.

   This example illustrated the case in which a mobile node is attached
   to a mobile network.  That is, the mobile node is mobile with respect
   to the network, which itself is also mobile (here with respect to the
   ground).  If, instead, the node is fixed with respect to the mobile
   network (the mobile network is the fixed node's home network), then
   either of two methods may be used to cause datagrams from
   correspondent nodes to be routed to the fixed node.

   A home agent MAY be configured to have a permanent registration for
   the fixed node, that indicates the mobile router's address as the
   fixed host's care-of address.  The mobile router's home agent will
   usually be used for this purpose.  The home agent is then responsible
   for advertising connectivity using normal routing protocols to the
   fixed node.  Any datagrams sent to the fixed node will thus use
   recursive tunneling as described above.

   Alternatively, the mobile router MAY advertise connectivity to the
   entire mobile network using normal IP routing protocols through a
   bi-directional tunnel to its own home agent.  This method avoids the
   need for recursive tunneling of datagrams.

4.6. ARP, Proxy ARP, and Gratuitous ARP

   The use of ARP [16] requires special rules for correct operation when
   wireless or mobile nodes are involved.  The requirements specified in
   this section apply to all home networks in which ARP is used for
   address resolution.




Perkins                     Standards Track                    [Page 62]

RFC 2002                  IP Mobility Support               October 1996


   In addition to the normal use of ARP for resolving a target node's
   link-layer address from its IP address, this document distinguishes
   two special uses of ARP:

       -  A Proxy ARP [18] is an ARP Reply sent by one node on behalf
          of another node which is either unable or unwilling to answer
          its own ARP Requests.  The sender of a Proxy ARP reverses the
          Sender and Target Protocol Address fields as described in [16],
          but supplies some configured link-layer address (generally, its
          own) in the Sender Hardware Address field.  The node receiving
          the Reply will then associate this link-layer address with the
          IP address of the original target node, causing it to transmit
          future datagrams for this target node to the node with that
          link-layer address.

       -  A Gratuitous ARP [23] is an ARP packet sent by a node in order to
          spontaneously cause other nodes to update an entry in their ARP
          cache.  A gratuitous ARP MAY use either an ARP Request or an ARP
          Reply packet.  In either case, the ARP Sender Protocol Address
          and ARP Target Protocol Address are both set to the IP address
          of the cache entry to be updated, and the ARP Sender Hardware
          Address is set to the link-layer address to which this cache
          entry should be updated.  When using an ARP Reply packet, the
          Target Hardware Address is also set to the link-layer address to
          which this cache entry should be updated (this field is not used
          in an ARP Request packet).

          In either case, for a gratuitous ARP, the ARP packet MUST be
          transmitted as a local broadcast packet on the local link.  As
          specified in [16], any node receiving any ARP packet (Request or
          Reply) MUST update its local ARP cache with the Sender Protocol
          and Hardware Addresses in the ARP packet, if the receiving node
          has an entry for that IP address already in its ARP cache.  This
          requirement in the ARP protocol applies even for ARP Request
          packets, and for ARP Reply packets that do not match any ARP
          Request transmitted by the receiving node [16].

   While a mobile node is registered on a foreign network, its home
   agent uses proxy ARP [18] to reply to ARP Requests it receives that
   seek the mobile node's link-layer address.  When receiving an ARP
   Request, the home agent MUST examine the target IP address of the
   Request, and if this IP address matches the home address of any
   mobile node for which it has a registered mobility binding, the home
   agent MUST transmit an ARP Reply on behalf of the mobile node.  After
   exchanging the sender and target addresses in the packet [18], the
   home agent MUST set the sender link-layer address in the packet to
   the link-layer address of its own interface over which the Reply will
   be sent.



Perkins                     Standards Track                    [Page 63]

RFC 2002                  IP Mobility Support               October 1996


   When a mobile node leaves its home network and registers a binding on
   a foreign network, its home agent uses gratuitous ARP to update the
   ARP caches of nodes on the home network.  This causes such nodes to
   associate the link-layer address of the home agent with the mobile
   node's home (IP) address.  When registering a binding for a mobile
   node for which the home agent previously had no binding (the mobile
   node was assumed to be at home), the home agent MUST transmit a
   gratuitous ARP on behalf of the mobile node.  This gratuitous ARP
   packet MUST be transmitted as a broadcast packet on the link on which
   the mobile node's home address is located.  Since broadcasts on the
   local link (such as Ethernet) are typically not guaranteed to be
   reliable, the gratuitous ARP packet SHOULD be retransmitted a small
   number of times to increase its reliability.

   When a mobile node returns to its home network, the mobile node
   and its home agent use gratuitous ARP to cause all nodes on the
   mobile node's home network to update their ARP caches to once again
   associate the mobile node's own link-layer address with the mobile
   node's home (IP) address.  Before transmitting the (de)Registration
   Request message to its home agent, the mobile node MUST transmit this
   gratuitous ARP on its home network as a local broadcast on this link.
   The gratuitous ARP packet SHOULD be retransmitted a small number of
   times to increase its reliability, but these retransmissions SHOULD
   proceed in parallel with the transmission and processing of its
   (de)Registration Request.

   When the mobile node's home agent receives and accepts this
   (de)Registration Request, the home agent MUST also transmit a
   gratuitous ARP on the mobile node's home network.  This gratuitous
   ARP also is used to associate the mobile node's home address with
   the mobile node's own link-layer address.  A gratuitous ARP is
   transmitted by both the mobile node and its home agent, since in the
   case of wireless network interfaces, the area within transmission
   range of the mobile node will likely differ from that within range
   of its its home agent.  Th ARP packet from the home agent MUST be
   transmitted as a local broadcast on the mobile node's home link,
   and SHOULD be retransmitted a small number of times to increase
   its reliability; these retransmissions, however, SHOULD proceed in
   parallel with the transmission and processing of its (de)Registration
   Reply.

   While the mobile node is away from home, it MUST NOT transmit any
   broadcast ARP Request or ARP Reply messages.  Finally, while the
   mobile node is away from home, it MUST NOT reply to ARP Requests
   in which the target IP address is its own home address, unless the
   ARP Request is sent by a foreign agent with which the mobile node
   is attempting to register or a foreign agent with which the mobile
   node has an unexpired registration.  In the latter case, the mobile



Perkins                     Standards Track                    [Page 64]

RFC 2002                  IP Mobility Support               October 1996


   node MUST use a unicast ARP Reply to respond to the foreign agent.
   Note that if the mobile node is using a co-located care-of address
   and receives an ARP Request in which the target IP address is this
   care-of address, then the mobile node SHOULD reply to this ARP
   Request.  Note also that, when transmitting a Registration Request on
   a foreign network, a mobile node may discover the link-layer address
   of a foreign agent by storing the address as it is received from the
   Agent Advertisement from that foreign agent, but not by transmitting
   a broadcast ARP Request message.

   The specific order in which each of the above requirements for the
   use of ARP, proxy ARP, and gratuitous ARP are applied, relative to
   the transmission and processing of the mobile node's Registration
   Request and Registration Reply messages when leaving home or
   returning home, are important to the correct operation of the
   protocol.

   To summarize the above requirements, when a mobile node leaves its
   home network, the following steps, in this order, MUST be performed:

    -  The mobile node decides to register away from home, perhaps
       because it has received an Agent Advertisement from a foreign
       agent and has not recently received one from its home agent.

    -  Before transmitting the Registration Request, the mobile node
       disables its own future processing of any ARP Requests it
       may subsequently receive requesting the link-layer address
       corresponding to its home address, except insofar as necessary to
       communicate with foreign agents on visited networks.

    -  The mobile node transmits its Registration Request.

    -  When the mobile node's home agent receives and accepts the
       Registration Request, it performs a gratuitous ARP on behalf
       of the mobile node, and begins using proxy ARP to reply to ARP
       Requests that it receives requesting the mobile node's link-layer
       address.  If, instead, the home agent rejects the Registration
       Request, no ARP processing (gratuitous nor proxy) is performed by
       the home agent.

   When a mobile node later returns to its home network, the following
   steps, in this order, MUST be performed:

    -  The mobile node decides to register at home, perhaps because it
       has received an Agent Advertisement from its home agent.






Perkins                     Standards Track                    [Page 65]

RFC 2002                  IP Mobility Support               October 1996


    -  Before transmitting the Registration Request, the mobile node
       re-enables its own future processing of any ARP Requests it may
       subsequently receive requesting its link-layer address.

    -  The mobile node performs a gratuitous ARP for itself.

    -  The mobile node transmits its Registration Request.

    -  When the mobile node's home agent receives and accepts the
       Registration Request, it stops using proxy ARP to reply to
       ARP Requests that it receives requesting the mobile node's
       link-layer address, and then performs a gratuitous ARP on behalf
       of the mobile node.  If, instead, the home agent rejects the
       Registration Request, no ARP processing (gratuitous nor proxy) is
       performed by the home agent.

5. Security Considerations

   The mobile computing environment is potentially very different from
   the ordinary computing environment.  In many cases, mobile computers
   will be connected to the network via wireless links.  Such links are
   particularly vulnerable to passive eavesdropping, active replay
   attacks, and other active attacks.

5.1. Message Authentication Codes

   Home agents and mobile nodes MUST be able to perform authentication.
   The default algorithm is keyed MD5 [21], with a key size of 128 bits.
   The default mode of operation is to both precede and follow the data
   to be hashed, by the 128-bit key; that is, MD5 is to be used in
   "prefix+suffix" mode.  The foreign agent MUST also support
   authentication using keyed MD5 and key sizes of 128 bits or greater,
   with manual key distribution.  More authentication algorithms,
   algorithm modes, key distribution methods, and key sizes MAY also be
   supported.

5.2. Areas of Security Concern in this Protocol

   The registration protocol described in this document will result in a
   mobile node's traffic being tunneled to its care-of address.  This
   tunneling feature could be a significant vulnerability if the
   registration were not authenticated.  Such remote redirection, for
   instance as performed by the mobile registration protocol, is widely
   understood to be a security problem in the current Internet if not
   authenticated [2].  Moreover, the Address Resolution Protocol (ARP)
   is not authenticated, and can potentially be used to steal another
   host's traffic.  The use of "Gratuitous ARP" (Section 4.6) brings
   with it all of the risks associated with the use of ARP.



Perkins                     Standards Track                    [Page 66]

RFC 2002                  IP Mobility Support               October 1996


5.3. Key Management

   This specification requires a strong authentication mechanism (keyed
   MD5) which precludes many potential attacks based on the Mobile IP
   registration protocol.  However, because key distribution is
   difficult in the absence of a network key management protocol,
   messages with the foreign agent are not all required to be
   authenticated.  In a commercial environment it might be important to
   authenticate all messages between the foreign agent and the home
   agent, so that billing is possible, and service providers do not
   provide service to users that are not legitimate customers of that
   service provider.

5.4. Picking Good Random Numbers

   The strength of any authentication mechanism depends on several
   factors, including the innate strength of the authentication
   algorithm, the secrecy of the key used, the strength of the key used,
   and the quality of the particular implementation.  This specification
   requires implementation of keyed MD5 for authentication, but does not
   preclude the use of other authentication algorithms and modes.  For
   keyed MD5 authentication to be useful, the 128-bit key must be both
   secret (that is, known only to authorized parties) and pseudo-random.
   If nonces are used in connection with replay protection, they must
   also be selected carefully.  Eastlake, et al. [7] provides more
   information on generating pseudo-random numbers.

5.5. Privacy

   Users who have sensitive data that they do not wish others to see
   should use mechanisms outside the scope of this document (such as
   encryption) to provide appropriate protection.  Users concerned about
   traffic analysis should consider appropriate use of link encryption.
   If absolute location privacy is desired, the mobile node can create a
   tunnel to its home agent.  Then, datagrams destined for correspondent
   nodes will appear to emanate from the home network, and it may be
   more difficult to pinpoint the location of the mobile node.  Such
   mechanisms are all beyond the scope of this document.













Perkins                     Standards Track                    [Page 67]

RFC 2002                  IP Mobility Support               October 1996


5.6. Replay Protection for Registration Requests

   The Identification field is used to let the home agent verify that a
   registration message has been freshly generated by the mobile node,
   not replayed by an attacker from some previous registration.  Two
   methods are described in this section:  timestamps (mandatory) and
   "nonces" (optional).  All mobile nodes and home agents MUST implement
   timestamp-based replay protection.  These nodes MAY also implement
   nonce-based replay protection (but see Appendix A.2 for a patent that
   may apply to nonce-based replay protection).

   The style of replay protection in effect between a mobile node and
   its home agent is part of the mobile security association.  A mobile
   node and its home agent MUST agree on which method of replay
   protection will be used.  The interpretation of the Identification
   field depends on the method of replay protection as described in the
   subsequent subsections.

   Whatever method is used, the low-order 32 bits of the Identification
   MUST be copied unchanged from the Registration Request to the Reply.
   The foreign agent uses those bits (and the mobile node's home
   address) to match Registration Requests with corresponding replies.
   The mobile node MUST verify that the low-order 32 bits of any
   Registration Reply are identical to the bits it sent in the
   Registration Request.

   The Identification in a new Registration Request MUST NOT be the same
   as in an immediately preceding Request, and SHOULD NOT repeat while
   the same security context is being used between the mobile node and
   the home agent.  Retransmission as in Section 3.6.3 is allowed.

5.6.1. Replay Protection using Timestamps

   The basic principle of timestamp replay protection is that the node
   generating a message inserts the current time of day, and the node
   receiving the message checks that this timestamp is sufficiently
   close to its own time of day.  Obviously the two nodes must have
   adequately synchronized time-of-day clocks.  As with any messages,
   time synchronization messages may be protected against tampering by
   an authentication mechanism determined by the security context
   between the two nodes.

   If timestamps are used, the mobile node MUST set the Identification
   field to a 64-bit value formatted as specified by the Network Time
   Protocol [13].  The low-order 32 bits of the NTP format represent
   fractional seconds, and those bits which are not available from a
   time source SHOULD be generated from a good source of randomness.
   Note, however, that when using timestamps, the 64-bit Identification



Perkins                     Standards Track                    [Page 68]

RFC 2002                  IP Mobility Support               October 1996


   used in a Registration Request from the mobile node MUST be greater
   than that used in any previous Registration Request, as the home
   agent uses this field also as a sequence number.  Without such a
   sequence number, it would be possible for a delayed duplicate of an
   earlier Registration Request to arrive at the home agent (within the
   clock synchronization required by the home agent), and thus be
   applied out of order, mistakenly altering the mobile node's current
   registered care-of address.

   Upon receipt of a Registration Request with a valid Mobile-Home
   Authentication Extension, the home agent MUST check the
   Identification field for validity.  In order to be valid, the
   timestamp contained in the Identification field MUST be close enough
   to the home agent's time of day clock and the timestamp MUST be
   greater than all previously accepted timestamps for the requesting
   mobile node.  Time tolerances and resynchronization details are
   specific to a particular mobility security association.

   If the timestamp is valid, the home agent copies the entire
   Identification field into the Registration Reply it returns the Reply
   to the mobile node.  If the timestamp is not valid, the home agent
   copies only the low-order 32 bits into the Registration Reply, and
   supplies the high-order 32 bits from its own time of day.  In this
   latter case, the home agent MUST reject the registration by returning
   Code 133 (identification mismatch) in the Registration Reply.

   As described in Section 3.6.2.1, the mobile node MUST verify that the
   low-order 32 bits of the Identification in the Registration Reply are
   identical to those in the rejected registration attempt, before using
   the high-order bits for clock resynchronization.

5.6.2. Replay Protection using Nonces

   Implementors of this optional mechanism should examine Appendix A.2
   for a patent that may be applicable to nonce-based replay protection.

   The basic principle of nonce replay protection is that node A
   includes a new random number in every message to node B, and checks
   that node B returns that same number in its next message to node A.
   Both messages use an authentication code to protect against
   alteration by an attacker.  At the same time node B can send its own
   nonces in all messages to node A (to be echoed by node A), so that it
   too can verify that it is receiving fresh messages.

   The home agent may be expected to have resources for computing
   pseudo-random numbers useful as nonces [7].  It inserts a new nonce
   as the high-order 32 bits of the identification field of every
   Registration Reply.  The home agent copies the low-order 32 bits of



Perkins                     Standards Track                    [Page 69]

RFC 2002                  IP Mobility Support               October 1996


   the Identification from the Registration Request message into the
   low-order 32 bits of the Identification in the Registration Reply.
   When the mobile node receives an authenticated Registration Reply
   from the home agent, it saves the high-order 32 bits of the
   identification for use as the high-order 32 bits of its next
   Registration Request.

   The mobile node is responsible for generating the low-order 32 bits
   of the Identification in each Registration Request.  Ideally it
   should generate its own random nonces.  However it may use any
   expedient method, including duplication of the random value sent by
   the home agent.  The method chosen is of concern only to the mobile
   node, because it is the node that checks for valid values in the
   Registration Reply.  The high-order and low-order 32 bits of the
   identification chosen SHOULD both differ from their previous values.
   The home agent uses a new high-order value and the mobile node uses a
   new low-order value for each registration message.  The foreign agent
   uses the low-order value (and the mobile host's home address) to
   correctly match registration replies with pending Requests (Section
   3.7.1).

   If a registration message is rejected because of an invalid nonce,
   the Reply always provides the mobile node with a new nonce to be used
   in the next registration.  Thus the nonce protocol is self-
   synchronizing.


























Perkins                     Standards Track                    [Page 70]

RFC 2002                  IP Mobility Support               October 1996


6. Acknowledgments

   Special thanks to Steve Deering (Xerox PARC), along with Dan Duchamp
   and John Ioannidis (JI) (Columbia), for forming the working group,
   chairing it, and putting so much effort into its early development.

   Thanks also to Kannan Alaggapan, Greg Minshall, and Tony Li for their
   contributions to the group while performing the duties of
   chairperson, as well as for their many useful comments.

   Thanks to the active members of the Mobile IP Working Group,
   particularly those who contributed text, including (in alphabetical
   order)

    - Ran Atkinson (Naval Research Lab),
    - Dave Johnson (Carnegie Mellon University),
    - Frank Kastenholz (FTP Software),
    - Anders Klemets (KTH),
    - Chip Maguire (KTH),
    - Andrew Myles (Macquarie University),
    - Al Quirt (Bell Northern Research),
    - Yakov Rekhter (IBM), and
    - Fumio Teraoka (Sony).

   Thanks to Charlie Kunzinger and to Bill Simpson, the editors who
   produced the first drafts for of this document, reflecting the
   discussions of the Working Group.  Much of the new text of this memo
   is due to Jim Solomon and Dave Johnson.

   Thanks to Greg Minshall (Novell), Phil Karn (Qualcomm), and Frank
   Kastenholz (FTP Software) for their generous support in hosting
   interim Working Group meetings.



















Perkins                     Standards Track                    [Page 71]

RFC 2002                  IP Mobility Support               October 1996


A. Patent Issues

   As of the time of publication, the IETF had been made aware of two
   patents that may be relevant to implementors of the protocol
   described in this technical specification.

A.1. IBM Patent #5,159,592

   Charles Perkins, editor of this memo, is sole inventor of U.S. Patent
   No. 5,159,592, assigned to IBM.  In a letter dated May 30, 1995, IBM
   brought this patent to the attention of the IETF, stating that this
   patent "relates to the Mobile IP." We understand that IBM did not
   intend to assert that any particular implementation of Mobile IP
   would or would not infringe the patent, but rather that IBM was
   meeting what it viewed as a duty to disclose information that could
   be relevant to the process of adopting a standard.

   Based on a review of the claims of the patent, IETF believes that a
   system of registering an address obtained from a foreign agent, as
   described in the document, would not necessarily infringe any of the
   claims of the patent; and that a system in which an address is
   obtained elsewhere and then registered can be implemented without
   necessarily infringing any claims of the patent.  Accordingly, our
   view is that the proposed protocol can be implemented without
   necessarily infringing the Perkins Patent.

   Parties considering adopting this protocol must be aware that some
   specific implementations, or features added to otherwise non-
   infringing implementations, may raise an issue of infringement with
   respect to this patent or to some other patent.

   This statement is for the IETF's assistance in its standard-setting
   procedure, and should not be relied upon by any party as an opinion
   or guarantee that any implementation it might make or use would not
   be covered by the Perkins Patent and any other patents.  In
   particular, IBM might disagree with the interpretation of this patent
   described herein.

A.2. IBM Patent #5,148,479

   This patent, also assigned to IBM, may be relevant to those who
   implement nonce-based replay protection as described in Section
   5.6.2.  Note that nonce-based replay protection is an optional
   feature of this specification.  Timestamp-based replay protection, on
   the other hand, (Section 5.6.1) is a requirement of this
   specification.





Perkins                     Standards Track                    [Page 72]

RFC 2002                  IP Mobility Support               October 1996


B. Link-Layer Considerations

   The mobile node MAY use link-layer mechanisms to decide that its
   point of attachment has changed.  Such indications include the
   Down/Testing/Up interface status [11], and changes in cell or
   administration.  The mechanisms will be specific to the particular
   link-layer technology, and are outside the scope of this document.

   The Point-to-Point-Protocol (PPP) [22] and its Internet Protocol
   Control Protocol (IPCP) [12], negotiates the use of IP addresses.

   The mobile node SHOULD first attempt to specify its home address, so
   that if the mobile node is attaching to its home network, the
   unrouted link will function correctly.  When the home address is not
   accepted by the peer, but a transient IP address is dynamically
   assigned to the mobile node, and the mobile node is capable of
   supporting a co-located care-of address, the mobile node MAY register
   that address as a co-located care-of address.  When the peer
   specifies its own IP address, that address MUST NOT be assumed to be
   a foreign agent care-of address or the IP address of a home agent.

C. TCP Considerations

C.1. TCP Timers

   Most hosts and routers which implement TCP/IP do not permit easy
   configuration of the TCP timer values.  When high-delay (e.g.,
   SATCOM) or low-bandwidth (e.g., High-Frequency Radio) links are in
   use, the default TCP timer values in many systems may cause
   retransmissions or timeouts, even when the link and network are
   actually operating properly with greater than usual delays because of
   the medium in use.  This can cause an inability to create or maintain
   TCP connections over such links, and can also cause unneeded
   retransmissions which consume already scarce bandwidth.  Vendors are
   encouraged to make TCP timers more configurable.  Vendors of systems
   designed for the mobile computing markets should pick default timer
   values more suited to low-bandwidth, high-delay links.  Users of
   mobile nodes should be sensitive to the possibility of timer-related
   difficulties.

C.2. TCP Congestion Management

   Mobile nodes often use media which are more likely to introduce
   errors, effectively causing more packets to be dropped.  This
   introduces a conflict with the mechanisms for congestion management
   found in modern versions of TCP [9].  Now, when a packet is dropped,
   the correspondent node's TCP implementation is likely to react as if
   there were a source of network congestion, and initiate the slow-



Perkins                     Standards Track                    [Page 73]

RFC 2002                  IP Mobility Support               October 1996


   start mechanisms [9] designed for controlling that problem.  However,
   those mechanisms are inappropriate for overcoming errors introduced
   by the links themselves, and have the effect of magnifying the
   discontinuity introduced by the dropped packet.  This problem has
   been analyzed by Caceres, et al. [3]; there is no easy solution
   available, and certainly no solution likely to be installed soon on
   all correspondent nodes.  While this problem is beyond the scope of
   this document, it does illustrate that providing performance
   transparency to mobile nodes involves understanding mechanisms
   outside the network layer.  It also indicates the need to avoid
   designs which systematically drop packets; such designs might
   otherwise be considered favorably when making engineering tradeoffs.

D. Example Scenarios

   This section shows example Registration Requests for several common
   scenarios.

D.1. Registering with a Foreign Agent Care-of Address

   The mobile node receives an Agent Advertisement from a foreign agent
   and wishes to register with that agent using the advertised foreign
   agent care-of address.  The mobile node wishes only IP-in-IP
   encapsulation, does not want broadcasts, and does not want
   simultaneous mobility bindings:

       IP fields:
         Source Address = mobile node's home address
         Destination Address = copied from the IP source address of the
           Agent Advertisement
         Time to Live = 1
       UDP fields:
         Source Port = <any>
         Destination Port = 434
       Registration Request fields:
         Type = 1
         S=0,B=0,D=0,M=0,G=0
         Lifetime = the Registration Lifetime copied from the
           Mobility Agent Advertisement Extension of the
           Router Advertisement message
         Home Address = the mobile node's home address
         Home Agent = IP address of mobile node's home agent
         Care-of Address = the Care-of Address copied from the
           Mobility Agent Advertisement Extension of the
           Router Advertisement message
         Identification = Network Time Protocol timestamp or Nonce
       Extensions:
         The Mobile-Home Authentication Extension



Perkins                     Standards Track                    [Page 74]

RFC 2002                  IP Mobility Support               October 1996


D.2. Registering with a Co-Located Care-of Address

   The mobile node enters a foreign network that contains no foreign
   agents.  The mobile node obtains an address from a DHCP server [6]
   for use as a co-located care-of address.  The mobile node supports
   all forms of encapsulation (IP-in-IP, minimal encapsulation, and
   GRE), desires a copy of broadcast datagrams on the home network, and
   does not want simultaneous mobility bindings:

       IP fields:
         Source Address = care-of address obtained from DHCP server
         Destination Address = IP address of home agent
         Time to Live = 64
       UDP fields:
         Source Port = <any>
         Destination Port = 434
       Registration Request fields:
         Type = 1
         S=0,B=1,D=1,M=1,G=1
         Lifetime = 1800 (seconds)
         Home Address = the mobile node's home address
         Home Agent = IP address of mobile node's home agent
         Care-of Address = care-of address obtained from DHCP server
         Identification = Network Time Protocol timestamp or Nonce
       Extensions:
         The Mobile-Home Authentication Extension

























Perkins                     Standards Track                    [Page 75]

RFC 2002                  IP Mobility Support               October 1996


D.3. Deregistration

   The mobile node returns home and wishes to deregister all care-of
   addresses with its home agent.

       IP fields:
         Source Address = mobile node's home address
         Destination Address = IP address of home agent
         Time to Live = 1
       UDP fields:
         Source Port = <any>
         Destination Port = 434
       Registration Request fields:
         Type = 1
         S=0,B=0,D=0,M=0,G=0
         Lifetime = 0
         Home Address = the mobile node's home address
         Home Agent = IP address of mobile node's home agent
         Care-of Address = the mobile node's home address
         Identification = Network Time Protocol timestamp or Nonce
       Extensions:
         The Mobile-Home Authentication Extension

E. Applicability of Prefix Lengths Extension

   Caution is indicated with the use of the Prefix Lengths Extension
   over wireless links, due to the irregular coverage areas provided by
   wireless transmitters.  As a result, it is possible that two foreign
   agents advertising the same prefix might indeed provide different
   connectivity to prospective mobile nodes.  The Prefix-Lengths
   Extension SHOULD NOT be included in the advertisements sent by agents
   in such a configuration.



















Perkins                     Standards Track                    [Page 76]

RFC 2002                  IP Mobility Support               October 1996


   Foreign agents using different wireless interfaces would have to
   cooperate using special protocols to provide identical coverage in
   space, and thus be able to claim to have wireless interfaces situated
   on the same subnetwork.  In the case of wired interfaces, a mobile
   node disconnecting and subsequently connecting to a new point of
   attachment, may well send in a new Registration Request no matter
   whether the new advertisement is on the same medium as the last
   recorded advertisement.  And, finally, in areas with dense
   populations of foreign agents it would seem unwise to require the
   propagation via routing protocols of the subnet prefixes associated
   with each individual wireless foreign agent; such a strategy could
   lead to quick depletion of available space for routing tables,
   unwarranted increases in the time required for processing routing
   updates, and longer decision times for route selection if routes
   (which are almost always unnecessary) are stored for wireless
   "subnets".

References

   [1] Atkinson, R., "IP Authentication Header", RFC 1826, August 1995.

   [2] S. M. Bellovin.  Security Problems in the TCP/IP Protocol Suite.
       ACM Computer Communications Review, 19(2), March 1989.

   [3] Ramon Caceres and Liviu Iftode.  Improving the Performance
       of Reliable Transport Protocols in Mobile Computing
       Environments.  IEEE Journal on Selected Areas in Communications,
       13(5):850--857, June 1995.

   [4] Deering, S., Editor, "ICMP Router Discovery Messages",
       RFC 1256, September 1991.

   [5] Deering, S., "Host Extensions for IP Multicasting", STD 5,
       RFC 1112, August 1989.

   [6] Droms, R., "Dynamic Host Configuration Protocol", RFC 1541,
       October 1993.

   [7] Eastlake, D., Crocker, S., and J. Schiller, "Randomness
       Requirements for Security", RFC 1750, December 1994.

   [8] Hanks, S., Li, R., Farinacci, D., and P. Traina, "Generic
       Routing Encapsulation (GRE)", RFC 1701, October 1994.

   [9] Van Jacobson.  Congestion Avoidance and Control.  In Proceedings
       of the SIGCOMM '88 Symposium:  Communications Architectures &
       Protocols, pages 314--329, August 1988.




Perkins                     Standards Track                    [Page 77]

RFC 2002                  IP Mobility Support               October 1996


   [10] Jacobson, V., "Compressing TCP/IP Headers for Low-Speed Serial
        Links", RFC 1144, February 1990.

   [11] McCloghrie, K., and F. Kastenholz, "Evolution of the
        Interfaces Group of MIB-II", RFC 1573, January 1994.

   [12] McGregor, G., "The PPP Internet Protocol Control Protocol
        (IPCP)", RFC 1332, May 1992.

   [13] Mills, D., "Network Time Protocol (Version 3):
        Specification, Implementation and Analysis", RFC 1305, March
        1992.

   [14] Perkins, C., "IP Encapsulation within IP", RFC 2003,
        October 1996.

   [15] Perkins, C., "Minimal Encapsulation within IP", RFC 2004,
        October 1996.

   [16] Plummer, D., "An Ethernet Address Resolution Protocol:
        Or Converting Network Protocol Addresses to 48.bit Ethernet
        Addresses for Transmission on Ethernet Hardware", STD 37,
        RFC 826, November 1982.

   [17] Postel, J., "User Datagram Protocol", STD 6, RFC 768, August
        1980.

   [18] Postel, J., "Multi-LAN Address Resolution", RFC 925, October
        1984.

   [19] Postel, J., Editor, "Internet Protocol", STD 5, RFC 791,
        September 1981.

   [20] Reynolds, J., and J. Postel, "Assigned Numbers", STD 2,
        RFC 1700, October 1994.

   [21] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
        April 1992.

   [22] Simpson, W., Editor, "The Point-to-Point Protocol
        (PPP)", STD 51, RFC 1661, July 1994.

   [23] W. Richard Stevens.  TCP/IP Illustrated, Volume 1:  The
        Protocols.  Addison-Wesley, Reading, Massachusetts, 1994.







Perkins                     Standards Track                    [Page 78]

RFC 2002                  IP Mobility Support               October 1996


Editor's Address

   Questions about this memo can also be directed to the editor:

   Charles Perkins
   Room H3-D34
   T. J. Watson Research Center
   IBM Corporation
   30 Saw Mill River Rd.
   Hawthorne, NY  10532

   Work:   +1-914-784-7350
   Fax:    +1-914-784-6205
   EMail: perk@watson.ibm.com

   The working group can be contacted via the current chair:

      Jim Solomon
      Motorola, Inc.
      1301 E. Algonquin Rd.
      Schaumburg, IL  60196

      Work:   +1-847-576-2753
      EMail: solomon@comm.mot.com



























Perkins                     Standards Track                    [Page 79]




 
Полезное

Статьи

Анализ сайта
Rambler's Top100
Render time: 0.031033992767334 sec