Сделать домашней страницей | Добавить в избранное
База RFC-документов

Полезное


Статьи

 

Request for Comments number 3713

Главная / RFC3713


Поиск RFC:

RFC3713 A Description of the Camellia Encryption Algorithm


RFC3713   A Description of the Camellia Encryption Algorithm    M. Matsui, J. Nakajima, S. Moriai [ April 2004 ] ( TXT = 25031 bytes)

Скачать PDF версию >>>









Network Working Group                                          M. Matsui
Request for Comments: 3713                                   J. Nakajima
Category: Informational                  Mitsubishi Electric Corporation
                                                               S. Moriai
                                        Sony Computer Entertainment Inc.
                                                              April 2004


           A Description of the Camellia Encryption Algorithm

Status of this Memo

   This memo provides information for the Internet community.  It does
   not specify an Internet standard of any kind.  Distribution of this
   memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2004).  All Rights Reserved.

Abstract

   This document describes the Camellia encryption algorithm.  Camellia
   is a block cipher with 128-bit block size and 128-, 192-, and 256-bit
   keys.  The algorithm description is presented together with key
   scheduling part and data randomizing part.

1.  Introduction

1.1.  Camellia

   Camellia was jointly developed by Nippon Telegraph and Telephone
   Corporation and Mitsubishi Electric Corporation in 2000
   [CamelliaSpec].  Camellia specifies the 128-bit block size and 128-,
   192-, and 256-bit key sizes, the same interface as the Advanced
   Encryption Standard (AES).  Camellia is characterized by its
   suitability for both software and hardware implementations as well as
   its high level of security.  From a practical viewpoint, it is
   designed to enable flexibility in software and hardware
   implementations on 32-bit processors widely used over the Internet
   and many applications, 8-bit processors used in smart cards,
   cryptographic hardware, embedded systems, and so on [CamelliaTech].
   Moreover, its key setup time is excellent, and its key agility is
   superior to that of AES.







Matsui, et al.               Informational                      [Page 1]

RFC 3713             Camellia Encryption Algorithm            April 2004


   Camellia has been scrutinized by the wide cryptographic community
   during several projects for evaluating crypto algorithms.  In
   particular, Camellia was selected as a recommended cryptographic
   primitive by the EU NESSIE (New European Schemes for Signatures,
   Integrity and Encryption) project [NESSIE] and also included in the
   list of cryptographic techniques for Japanese e-Government systems
   which were selected by the Japan CRYPTREC (Cryptography Research and
   Evaluation Committees) [CRYPTREC].

2.  Algorithm Description

   Camellia can be divided into "key scheduling part" and "data
   randomizing part".

2.1.  Terminology

   The following operators are used in this document to describe the
   algorithm.

      &    bitwise AND operation.
      |    bitwise OR operation.
      ^    bitwise exclusive-OR operation.
      <<   logical left shift operation.
      >>   logical right shift operation.
      <<<  left rotation operation.
      ~y   bitwise complement of y.
      0x   hexadecimal representation.

   Note that the logical left shift operation is done with the infinite
   data width.

   The constant values of MASK8, MASK32, MASK64, and MASK128 are defined
   as follows.

      MASK8   = 0xff;
      MASK32  = 0xffffffff;
      MASK64  = 0xffffffffffffffff;
      MASK128 = 0xffffffffffffffffffffffffffffffff;

2.2.  Key Scheduling Part

   In the key schedule part of Camellia, the 128-bit variables of KL and
   KR are defined as follows.  For 128-bit keys, the 128-bit key K is
   used as KL and KR is 0.  For 192-bit keys, the leftmost 128-bits of
   key K are used as KL and the concatenation of the rightmost 64-bits
   of K and the complement of the rightmost 64-bits of K are used as KR.
   For 256-bit keys, the leftmost 128-bits of key K are used as KL and
   the rightmost 128-bits of K are used as KR.



Matsui, et al.               Informational                      [Page 2]

RFC 3713             Camellia Encryption Algorithm            April 2004


   128-bit key K:
       KL = K;    KR = 0;

   192-bit key K:
       KL = K >> 64;
       KR = ((K & MASK64) << 64) | (~(K & MASK64));

   256-bit key K:
       KL = K >> 128;
       KR = K & MASK128;

   The 128-bit variables KA and KB are generated from KL and KR as
   follows.  Note that KB is used only if the length of the secret key
   is 192 or 256 bits.  D1 and D2 are 64-bit temporary variables.  F-
   function is described in Section 2.4.

   D1 = (KL ^ KR) >> 64;
   D2 = (KL ^ KR) & MASK64;
   D2 = D2 ^ F(D1, Sigma1);
   D1 = D1 ^ F(D2, Sigma2);
   D1 = D1 ^ (KL >> 64);
   D2 = D2 ^ (KL & MASK64);
   D2 = D2 ^ F(D1, Sigma3);
   D1 = D1 ^ F(D2, Sigma4);
   KA = (D1 << 64) | D2;
   D1 = (KA ^ KR) >> 64;
   D2 = (KA ^ KR) & MASK64;
   D2 = D2 ^ F(D1, Sigma5);
   D1 = D1 ^ F(D2, Sigma6);
   KB = (D1 << 64) | D2;

   The 64-bit constants Sigma1, Sigma2, ..., Sigma6 are used as "keys"
   in the F-function.  These constant values are, in hexadecimal
   notation, as follows.

   Sigma1 = 0xA09E667F3BCC908B;
   Sigma2 = 0xB67AE8584CAA73B2;
   Sigma3 = 0xC6EF372FE94F82BE;
   Sigma4 = 0x54FF53A5F1D36F1C;
   Sigma5 = 0x10E527FADE682D1D;
   Sigma6 = 0xB05688C2B3E6C1FD;

   64-bit subkeys are generated by rotating KL, KR, KA, and KB and
   taking the left- or right-half of them.







Matsui, et al.               Informational                      [Page 3]

RFC 3713             Camellia Encryption Algorithm            April 2004


   For 128-bit keys, 64-bit subkeys kw1, ..., kw4, k1, ..., k18,
   ke1, ..., ke4 are generated as follows.

   kw1 = (KL <<<   0) >> 64;
   kw2 = (KL <<<   0) & MASK64;
   k1  = (KA <<<   0) >> 64;
   k2  = (KA <<<   0) & MASK64;
   k3  = (KL <<<  15) >> 64;
   k4  = (KL <<<  15) & MASK64;
   k5  = (KA <<<  15) >> 64;
   k6  = (KA <<<  15) & MASK64;
   ke1 = (KA <<<  30) >> 64;
   ke2 = (KA <<<  30) & MASK64;
   k7  = (KL <<<  45) >> 64;
   k8  = (KL <<<  45) & MASK64;
   k9  = (KA <<<  45) >> 64;
   k10 = (KL <<<  60) & MASK64;
   k11 = (KA <<<  60) >> 64;
   k12 = (KA <<<  60) & MASK64;
   ke3 = (KL <<<  77) >> 64;
   ke4 = (KL <<<  77) & MASK64;
   k13 = (KL <<<  94) >> 64;
   k14 = (KL <<<  94) & MASK64;
   k15 = (KA <<<  94) >> 64;
   k16 = (KA <<<  94) & MASK64;
   k17 = (KL <<< 111) >> 64;
   k18 = (KL <<< 111) & MASK64;
   kw3 = (KA <<< 111) >> 64;
   kw4 = (KA <<< 111) & MASK64;

   For 192- and 256-bit keys, 64-bit subkeys kw1, ..., kw4, k1, ...,
   k24, ke1, ..., ke6 are generated as follows.

   kw1 = (KL <<<   0) >> 64;
   kw2 = (KL <<<   0) & MASK64;
   k1  = (KB <<<   0) >> 64;
   k2  = (KB <<<   0) & MASK64;
   k3  = (KR <<<  15) >> 64;
   k4  = (KR <<<  15) & MASK64;
   k5  = (KA <<<  15) >> 64;
   k6  = (KA <<<  15) & MASK64;
   ke1 = (KR <<<  30) >> 64;
   ke2 = (KR <<<  30) & MASK64;
   k7  = (KB <<<  30) >> 64;
   k8  = (KB <<<  30) & MASK64;
   k9  = (KL <<<  45) >> 64;
   k10 = (KL <<<  45) & MASK64;
   k11 = (KA <<<  45) >> 64;



Matsui, et al.               Informational                      [Page 4]

RFC 3713             Camellia Encryption Algorithm            April 2004


   k12 = (KA <<<  45) & MASK64;
   ke3 = (KL <<<  60) >> 64;
   ke4 = (KL <<<  60) & MASK64;
   k13 = (KR <<<  60) >> 64;
   k14 = (KR <<<  60) & MASK64;
   k15 = (KB <<<  60) >> 64;
   k16 = (KB <<<  60) & MASK64;
   k17 = (KL <<<  77) >> 64;
   k18 = (KL <<<  77) & MASK64;
   ke5 = (KA <<<  77) >> 64;
   ke6 = (KA <<<  77) & MASK64;
   k19 = (KR <<<  94) >> 64;
   k20 = (KR <<<  94) & MASK64;
   k21 = (KA <<<  94) >> 64;
   k22 = (KA <<<  94) & MASK64;
   k23 = (KL <<< 111) >> 64;
   k24 = (KL <<< 111) & MASK64;
   kw3 = (KB <<< 111) >> 64;
   kw4 = (KB <<< 111) & MASK64;

2.3.  Data Randomizing Part

2.3.1.  Encryption for 128-bit keys

   128-bit plaintext M is divided into the left 64-bit D1 and the right
   64-bit D2.

   D1 = M >> 64;
   D2 = M & MASK64;

   Encryption is performed using an 18-round Feistel structure with FL-
   and FLINV-functions inserted every 6 rounds. F-function, FL-function,
   and FLINV-function are described in Section 2.4.

   D1 = D1 ^ kw1;           // Prewhitening
   D2 = D2 ^ kw2;
   D2 = D2 ^ F(D1, k1);     // Round 1
   D1 = D1 ^ F(D2, k2);     // Round 2
   D2 = D2 ^ F(D1, k3);     // Round 3
   D1 = D1 ^ F(D2, k4);     // Round 4
   D2 = D2 ^ F(D1, k5);     // Round 5
   D1 = D1 ^ F(D2, k6);     // Round 6
   D1 = FL   (D1, ke1);     // FL
   D2 = FLINV(D2, ke2);     // FLINV
   D2 = D2 ^ F(D1, k7);     // Round 7
   D1 = D1 ^ F(D2, k8);     // Round 8
   D2 = D2 ^ F(D1, k9);     // Round 9
   D1 = D1 ^ F(D2, k10);    // Round 10



Matsui, et al.               Informational                      [Page 5]

RFC 3713             Camellia Encryption Algorithm            April 2004


   D2 = D2 ^ F(D1, k11);    // Round 11
   D1 = D1 ^ F(D2, k12);    // Round 12
   D1 = FL   (D1, ke3);     // FL
   D2 = FLINV(D2, ke4);     // FLINV
   D2 = D2 ^ F(D1, k13);    // Round 13
   D1 = D1 ^ F(D2, k14);    // Round 14
   D2 = D2 ^ F(D1, k15);    // Round 15
   D1 = D1 ^ F(D2, k16);    // Round 16
   D2 = D2 ^ F(D1, k17);    // Round 17
   D1 = D1 ^ F(D2, k18);    // Round 18
   D2 = D2 ^ kw3;           // Postwhitening
   D1 = D1 ^ kw4;

   128-bit ciphertext C is constructed from D1 and D2 as follows.

   C = (D2 << 64) | D1;

2.3.2.  Encryption for 192- and 256-bit keys

   128-bit plaintext M is divided into the left 64-bit D1 and the right
   64-bit D2.

   D1 = M >> 64;
   D2 = M & MASK64;

   Encryption is performed using a 24-round Feistel structure with FL-
   and FLINV-functions inserted every 6 rounds. F-function, FL-function,
   and FLINV-function are described in Section 2.4.

   D1 = D1 ^ kw1;           // Prewhitening
   D2 = D2 ^ kw2;
   D2 = D2 ^ F(D1, k1);     // Round 1
   D1 = D1 ^ F(D2, k2);     // Round 2
   D2 = D2 ^ F(D1, k3);     // Round 3
   D1 = D1 ^ F(D2, k4);     // Round 4
   D2 = D2 ^ F(D1, k5);     // Round 5
   D1 = D1 ^ F(D2, k6);     // Round 6
   D1 = FL   (D1, ke1);     // FL
   D2 = FLINV(D2, ke2);     // FLINV
   D2 = D2 ^ F(D1, k7);     // Round 7
   D1 = D1 ^ F(D2, k8);     // Round 8
   D2 = D2 ^ F(D1, k9);     // Round 9
   D1 = D1 ^ F(D2, k10);    // Round 10
   D2 = D2 ^ F(D1, k11);    // Round 11
   D1 = D1 ^ F(D2, k12);    // Round 12
   D1 = FL   (D1, ke3);     // FL
   D2 = FLINV(D2, ke4);     // FLINV
   D2 = D2 ^ F(D1, k13);    // Round 13



Matsui, et al.               Informational                      [Page 6]

RFC 3713             Camellia Encryption Algorithm            April 2004


   D1 = D1 ^ F(D2, k14);    // Round 14
   D2 = D2 ^ F(D1, k15);    // Round 15
   D1 = D1 ^ F(D2, k16);    // Round 16
   D2 = D2 ^ F(D1, k17);    // Round 17
   D1 = D1 ^ F(D2, k18);    // Round 18
   D1 = FL   (D1, ke5);     // FL
   D2 = FLINV(D2, ke6);     // FLINV
   D2 = D2 ^ F(D1, k19);    // Round 19
   D1 = D1 ^ F(D2, k20);    // Round 20
   D2 = D2 ^ F(D1, k21);    // Round 21
   D1 = D1 ^ F(D2, k22);    // Round 22
   D2 = D2 ^ F(D1, k23);    // Round 23
   D1 = D1 ^ F(D2, k24);    // Round 24
   D2 = D2 ^ kw3;           // Postwhitening
   D1 = D1 ^ kw4;

   128-bit ciphertext C is constructed from D1 and D2 as follows.

   C = (D2 << 64) | D1;

2.3.3.  Decryption

   The decryption procedure of Camellia can be done in the same way as
   the encryption procedure by reversing the order of the subkeys.

   That is to say:

   128-bit key:
       kw1 <-> kw3
       kw2 <-> kw4
       k1  <-> k18
       k2  <-> k17
       k3  <-> k16
       k4  <-> k15
       k5  <-> k14
       k6  <-> k13
       k7  <-> k12
       k8  <-> k11
       k9  <-> k10
       ke1 <-> ke4
       ke2 <-> ke3

   192- or 256-bit key:
       kw1 <-> kw3
       kw2 <-> kw4
       k1  <-> k24
       k2  <-> k23
       k3  <-> k22



Matsui, et al.               Informational                      [Page 7]

RFC 3713             Camellia Encryption Algorithm            April 2004


       k4  <-> k21
       k5  <-> k20
       k6  <-> k19
       k7  <-> k18
       k8  <-> k17
       k9  <-> k16
       k10 <-> k15
       k11 <-> k14
       k12 <-> k13
       ke1 <-> ke6
       ke2 <-> ke5
       ke3 <-> ke4

2.4.  Components of Camellia

2.4.1.  F-function

   F-function takes two parameters.  One is 64-bit input data F_IN.  The
   other is 64-bit subkey KE.  F-function returns 64-bit data F_OUT.

   F(F_IN, KE)
   begin
       var x as 64-bit unsigned integer;
       var t1, t2, t3, t4, t5, t6, t7, t8 as 8-bit unsigned integer;
       var y1, y2, y3, y4, y5, y6, y7, y8 as 8-bit unsigned integer;
       x  = F_IN ^ KE;
       t1 =  x >> 56;
       t2 = (x >> 48) & MASK8;
       t3 = (x >> 40) & MASK8;
       t4 = (x >> 32) & MASK8;
       t5 = (x >> 24) & MASK8;
       t6 = (x >> 16) & MASK8;
       t7 = (x >>  8) & MASK8;
       t8 =  x        & MASK8;
       t1 = SBOX1[t1];
       t2 = SBOX2[t2];
       t3 = SBOX3[t3];
       t4 = SBOX4[t4];
       t5 = SBOX2[t5];
       t6 = SBOX3[t6];
       t7 = SBOX4[t7];
       t8 = SBOX1[t8];
       y1 = t1 ^ t3 ^ t4 ^ t6 ^ t7 ^ t8;
       y2 = t1 ^ t2 ^ t4 ^ t5 ^ t7 ^ t8;
       y3 = t1 ^ t2 ^ t3 ^ t5 ^ t6 ^ t8;
       y4 = t2 ^ t3 ^ t4 ^ t5 ^ t6 ^ t7;
       y5 = t1 ^ t2 ^ t6 ^ t7 ^ t8;
       y6 = t2 ^ t3 ^ t5 ^ t7 ^ t8;



Matsui, et al.               Informational                      [Page 8]

RFC 3713             Camellia Encryption Algorithm            April 2004


       y7 = t3 ^ t4 ^ t5 ^ t6 ^ t8;
       y8 = t1 ^ t4 ^ t5 ^ t6 ^ t7;
       F_OUT = (y1 << 56) | (y2 << 48) | (y3 << 40) | (y4 << 32)
       | (y5 << 24) | (y6 << 16) | (y7 <<  8) | y8;
       return FO_OUT;
   end.

   SBOX1, SBOX2, SBOX3, and SBOX4 are lookup tables with 8-bit input/
   output data.  SBOX2, SBOX3, and SBOX4 are defined using SBOX1 as
   follows:

       SBOX2[x] = SBOX1[x] <<< 1;
       SBOX3[x] = SBOX1[x] <<< 7;
       SBOX4[x] = SBOX1[x <<< 1];

   SBOX1 is defined by the following table.  For example, SBOX1[0x3d]
   equals 86.

   SBOX1:
         0   1   2   3   4   5   6   7   8   9   a   b   c   d   e   f
   00: 112 130  44 236 179  39 192 229 228 133  87  53 234  12 174  65
   10:  35 239 107 147  69  25 165  33 237  14  79  78  29 101 146 189
   20: 134 184 175 143 124 235  31 206  62  48 220  95  94 197  11  26
   30: 166 225  57 202 213  71  93  61 217   1  90 214  81  86 108  77
   40: 139  13 154 102 251 204 176  45 116  18  43  32 240 177 132 153
   50: 223  76 203 194  52 126 118   5 109 183 169  49 209  23   4 215
   60:  20  88  58  97 222  27  17  28  50  15 156  22  83  24 242  34
   70: 254  68 207 178 195 181 122 145  36   8 232 168  96 252 105  80
   80: 170 208 160 125 161 137  98 151  84  91  30 149 224 255 100 210
   90:  16 196   0  72 163 247 117 219 138   3 230 218   9  63 221 148
   a0: 135  92 131   2 205  74 144  51 115 103 246 243 157 127 191 226
   b0:  82 155 216  38 200  55 198  59 129 150 111  75  19 190  99  46
   c0: 233 121 167 140 159 110 188 142  41 245 249 182  47 253 180  89
   d0: 120 152   6 106 231  70 113 186 212  37 171  66 136 162 141 250
   e0: 114   7 185  85 248 238 172  10  54  73  42 104  60  56 241 164
   f0:  64  40 211 123 187 201  67 193  21 227 173 244 119 199 128 158

2.4.2.  FL- and FLINV-functions

   FL-function takes two parameters.  One is 64-bit input data FL_IN.
   The other is 64-bit subkey KE.  FL-function returns 64-bit data
   FL_OUT.

   FL(FL_IN, KE)
   begin
       var x1, x2 as 32-bit unsigned integer;
       var k1, k2 as 32-bit unsigned integer;
       x1 = FL_IN >> 32;



Matsui, et al.               Informational                      [Page 9]

RFC 3713             Camellia Encryption Algorithm            April 2004


       x2 = FL_IN & MASK32;
       k1 = KE >> 32;
       k2 = KE & MASK32;
       x2 = x2 ^ ((x1 & k1) <<< 1);
       x1 = x1 ^ (x2 | k2);
       FL_OUT = (x1 << 32) | x2;
   end.

   FLINV-function is the inverse function of the FL-function.

   FLINV(FLINV_IN, KE)
   begin
       var y1, y2 as 32-bit unsigned integer;
       var k1, k2 as 32-bit unsigned integer;
       y1 = FLINV_IN >> 32;
       y2 = FLINV_IN & MASK32;
       k1 = KE >> 32;
       k2 = KE & MASK32;
       y1 = y1 ^ (y2 | k2);
       y2 = y2 ^ ((y1 & k1) <<< 1);
       FLINV_OUT = (y1 << 32) | y2;
   end.

3.  Object Identifiers

   The Object Identifier for Camellia with 128-bit key in Cipher Block
   Chaining (CBC) mode is as follows:

      id-camellia128-cbc OBJECT IDENTIFIER ::=
          { iso(1) member-body(2) 392 200011 61 security(1)
            algorithm(1) symmetric-encryption-algorithm(1)
            camellia128-cbc(2) }

   The Object Identifier for Camellia with 192-bit key in Cipher Block
   Chaining (CBC) mode is as follows:

      id-camellia192-cbc OBJECT IDENTIFIER ::=
          { iso(1) member-body(2) 392 200011 61 security(1)
            algorithm(1) symmetric-encryption-algorithm(1)
            camellia192-cbc(3) }

   The Object Identifier for Camellia with 256-bit key in Cipher Block
   Chaining (CBC) mode is as follows:

      id-camellia256-cbc OBJECT IDENTIFIER ::=
          { iso(1) member-body(2) 392 200011 61 security(1)
            algorithm(1) symmetric-encryption-algorithm(1)
            camellia256-cbc(4) }



Matsui, et al.               Informational                     [Page 10]

RFC 3713             Camellia Encryption Algorithm            April 2004


   The above algorithms need Initialization Vector (IV).  To determine
   the value of IV, the above algorithms take parameters as follows:

      CamelliaCBCParameter ::= CamelliaIV  --  Initialization Vector

      CamelliaIV ::= OCTET STRING (SIZE(16))

   When these object identifiers are used, plaintext is padded before
   encryption according to RFC2315 [RFC2315].

4.  Security Considerations

   The recent advances in cryptanalytic techniques are remarkable.  A
   quantitative evaluation of security against powerful cryptanalytic
   techniques such as differential cryptanalysis and linear
   cryptanalysis is considered to be essential in designing any new
   block cipher.  We evaluated the security of Camellia by utilizing
   state-of-the-art cryptanalytic techniques.  We confirmed that
   Camellia has no differential and linear characteristics that hold
   with probability more than 2^(-128), which means that it is extremely
   unlikely that differential and linear attacks will succeed against
   the full 18-round Camellia.  Moreover, Camellia was designed to offer
   security against other advanced cryptanalytic attacks including
   higher order differential attacks, interpolation attacks, related-key
   attacks, truncated differential attacks, and so on [Camellia].

5.  Informative References

   [CamelliaSpec] Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai,
                  S., Nakajima, J. and T. Tokita, "Specification of
                  Camellia --- a 128-bit Block Cipher".
                  http://info.isl.ntt.co.jp/camellia/

   [CamelliaTech] Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai,
                  S., Nakajima, J. and T. Tokita, "Camellia: A 128-Bit
                  Block Cipher Suitable for Multiple Platforms".
                  http://info.isl.ntt.co.jp/camellia/

   [Camellia]     Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai,
                  S., Nakajima, J. and T. Tokita, "Camellia: A 128-Bit
                  Block Cipher Suitable for Multiple Platforms - Design
                  and Analysis -", In Selected Areas in Cryptography,
                  7th Annual International Workshop, SAC 2000, Waterloo,
                  Ontario, Canada, August 2000, Proceedings, Lecture
                  Notes in Computer Science 2012, pp.39-56, Springer-
                  Verlag, 2001.





Matsui, et al.               Informational                     [Page 11]

RFC 3713             Camellia Encryption Algorithm            April 2004


   [CRYPTREC]     "CRYPTREC Advisory Committee Report FY2002", Ministry
                  of Public Management, Home Affairs, Posts and
                  Telecommunications, and Ministry of Economy, Trade and
                  Industry, March 2003.
                  http://www.soumu.go.jp/joho_tsusin/security/
                  cryptrec.html,
                  CRYPTREC home page by Information-technology Promotion
                  Agency, Japan (IPA)
                  http://www.ipa.go.jp/security/enc/CRYPTREC/index-
                  e.html

   [NESSIE]       New European Schemes for Signatures, Integrity and
                  Encryption (NESSIE) project.
                  http://www.cryptonessie.org

   [RFC2315]      Kaliski, B., "PKCS #7: Cryptographic Message Syntax
                  Version 1.5", RFC 2315, March 1998.


































Matsui, et al.               Informational                     [Page 12]

RFC 3713             Camellia Encryption Algorithm            April 2004


Appendix A.  Example Data of Camellia

   Here are test data for Camellia in hexadecimal form.

   128-bit key
       Key       : 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
       Plaintext : 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
       Ciphertext: 67 67 31 38 54 96 69 73 08 57 06 56 48 ea be 43

   192-bit key
       Key       : 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
                 : 00 11 22 33 44 55 66 77
       Plaintext : 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
       Ciphertext: b4 99 34 01 b3 e9 96 f8 4e e5 ce e7 d7 9b 09 b9

   256-bit key
       Key       : 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
                 : 00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff
       Plaintext : 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
       Ciphertext: 9a cc 23 7d ff 16 d7 6c 20 ef 7c 91 9e 3a 75 09































Matsui, et al.               Informational                     [Page 13]

RFC 3713             Camellia Encryption Algorithm            April 2004


Acknowledgements

   Shiho Moriai worked for NTT when this document was developed.

Authors' Addresses

   Mitsuru Matsui
   Mitsubishi Electric Corporation
   Information Technology R&D Center
   5-1-1 Ofuna, Kamakura
   Kanagawa 247-8501, Japan

   Phone: +81-467-41-2190
   Fax:   +81-467-41-2185
   EMail: matsui@iss.isl.melco.co.jp


   Junko Nakajima
   Mitsubishi Electric Corporation
   Information Technology R&D Center
   5-1-1 Ofuna, Kamakura
   Kanagawa 247-8501, Japan

   Phone: +81-467-41-2190
   Fax:   +81-467-41-2185
   EMail: june15@iss.isl.melco.co.jp


   Shiho Moriai
   Sony Computer Entertainment Inc.

   Phone: +81-3-6438-7523
   Fax:   +81-3-6438-8629
   EMail: shiho@rd.scei.sony.co.jp
          camellia@isl.ntt.co.jp (Camellia team)
















Matsui, et al.               Informational                     [Page 14]

RFC 3713             Camellia Encryption Algorithm            April 2004


Full Copyright Statement

   Copyright (C) The Internet Society (2004).  This document is subject
   to the rights, licenses and restrictions contained in BCP 78 and
   except as set forth therein, the authors retain all their rights.

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
   REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE
   INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR
   IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
   THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed
   to pertain to the implementation or use of the technology
   described in this document or the extent to which any license
   under such rights might or might not be available; nor does it
   represent that it has made any independent effort to identify any
   such rights.  Information on the procedures with respect to
   rights in RFC documents can be found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use
   of such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository
   at http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention
   any copyrights, patents or patent applications, or other
   proprietary rights that may cover technology that may be required
   to implement this standard.  Please address the information to the
   IETF at ietf-ipr@ietf.org.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.









Matsui, et al.               Informational                     [Page 15]




 
Полезное

Статьи

Анализ сайта
Rambler's Top100
Render time: 0.013957023620605 sec